K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta xét tổng:

\(M = \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} - \frac{1}{7} + \hdots + \frac{1}{2022} - \frac{1}{2023}\)

Bước 1: Nhóm các số hạng theo từng cặp

Ta nhóm từng cặp số hạng lại:

\(\left(\right. \frac{1}{2} - \frac{1}{3} \left.\right) + \left(\right. \frac{1}{4} - \frac{1}{5} \left.\right) + \left(\right. \frac{1}{6} - \frac{1}{7} \left.\right) + \hdots + \left(\right. \frac{1}{2022} - \frac{1}{2023} \left.\right)\)

Mỗi cặp có dạng:

\(\frac{1}{2 k} - \frac{1}{2 k + 1}\)

Với \(k = 1 , 2 , \ldots , 1011\).


Bước 2: So sánh từng cặp số hạng

Xét bất kỳ cặp số hạng nào:

\(\frac{1}{2 k} - \frac{1}{2 k + 1} = \frac{\left(\right. 2 k + 1 \left.\right) - 2 k}{2 k \left(\right. 2 k + 1 \left.\right)} = \frac{1}{2 k \left(\right. 2 k + 1 \left.\right)}\)

Ta có bất đẳng thức:

\(\frac{1}{2 k \left(\right. 2 k + 1 \left.\right)} > \frac{1}{4 k^{2}}\)

Vậy tổng M có thể xấp xỉ bằng tổng của dãy giảm dần này.


Bước 3: Chứng minh \(\frac{1}{5} < M < \frac{2}{5}\)

  • Dùng phương pháp xấp xỉ tổng bằng tích phân hoặc ước lượng, ta có thể chứng minh rằng: \(\frac{1}{5} < M < \frac{2}{5}\)


khó vaizzzz

26 tháng 11 2023

a:

Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)

Từ 1 đến 2025 sẽ có:

\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)

Ta có: 1-3=5-7=...=2021-2023=-2

=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này

=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)

b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)

Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)

Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4

=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này

=>\(S=506\cdot\left(-4\right)=-2024\)

3 tháng 1 2024

S  = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023)       (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0

3 tháng 1 2024

S  = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023)       (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0

23 tháng 3 2023

P=[(1-2)+(-3+4)+(5-6)+(-7+8)+...+(993-994)+(-995+996)]+997

P=[(-1)+1+(-1)+1+...+(-1)+1+(-1)+1]+997

P= 0 +0 +...+ 0 +997

P=997

20 tháng 6 2023

sorry cao lộc, đến lúc bạn trả lời thì mình có đáp án rồi

1 tháng 5 2024

bạn có đáp án rồi thì chụp hộ mình vớz

 

31 tháng 10 2023

cái nì mik chịu

8 tháng 3 2024

M=(1/5+1/5^2+1/5^3+...+1/5^2023) + 1/5x(1/5+1/5^2+1/5^3+...+1/5^2022) + ... + 1/5^2021x(1/5+1/5^2) + 1/5^2022x1/5

Xét biểu thức N=1/5+1/5^2+1/5^3 + ... + 1/5^k (K>0, k thuộc Z)

=> 5N=1+1/5+1/5^2+1/5^3+...+1/5^(k-1)

=> 4N= 5N - N =1 - 1/5^k

=> 1/5+1/5^2+1/5^3 + ... + 1/5^k = 1/4x(1-1/5^k)

Thay vào biểu thức M, ta có:

M= 1/4x(1-1/5^2023) + 1/5x1/4x(1-1/5^2022) + ... + 1/5^2021x1/4x(1-1/5^2) + 1/5^2022x1/4x(1-1/5)

=> 4M = (1+1/5+1/5^2+...+1/5^2022) - 2023/5^2023

=> 4M = 5/4x(1-1/5^2023)-2023/5^2023 < 5/4

=> M < 5/16 < 1/3 

Vậy M < 1/3 [ vượt chỉ tiêu nhé =)) ]

 

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

$A=(-1-2+3+4)+(-5-6+7+8)+(-9-10+11+12)+...+(-2021-2022+2023+2024)-2024$

$=\underbrace{4+4+...+4}_{506}-2024$
$=4.506-2024=0$

25 tháng 12 2023

Sửa đề: 1-2-3+4+5-6-7+8+...-2018-2019+2020+2021-2022-2023

=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+(2021-2022-2023)

=0+0+...+0+(-1-2023)

=-2024