−5x3+xy2z3−5x3+xy2z3 có bậc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A = \(xy^2z^3\) + \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\)
A \(\times\) \(xyz\) = \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\) + \(x^{2015}y^{2016}z^{2017}\)
A \(\times\) \(xyz\) - A = \(x^{2015}\)\(y^{2016}\)\(z^{2017}\) - \(xy^2z^3\)
A\(\times\)( \(xyz\) - 1) = \(x^{2015}\)\(y^{2016}z^{2017}\) - \(xy^2z^3\)
A = (\(x^{2015}\) \(y^{2016}\) \(z^{2017}\) - \(xy^2z^3\)) : (\(xyz\) - 1)
Thay \(x\) = -1; \(y\) = -1; \(z\) = -1
A = [(-1)2015.(-1)2016.(-1)2017 - (-1).(-1)2.(-1)3] : {(-1.(-1).(-1) - 1)}
A = [ 1 - 1] : [-1-1]
A = 0: (-2)
A = 0
A = ��2�3xy2z3 + �2�3�4x2y3z4+...+�2014�2015�2016x2014y2015z2016
A ×× ���xyz = �2�3�4x2y3z4+...+�2014�2015�2016x2014y2015z2016 + �2015�2016�2017x2015y2016z2017
A ×× ���xyz - A = �2015x2015�2016y2016�2017z2017 - ��2�3xy2z3
A××( ���xyz - 1) = �2015x2015�2016�2017y2016z2017 - ��2�3xy2z3
A = (�2015x2015 �2016y2016 �2017z2017 - ��2�3xy2z3) : (���xyz - 1)
Thay �x = -1; �y = -1; �z = -1
A = [(-1)2015.(-1)2016.(-1)2017 - (-1).(-1)2.(-1)3] : {(-1.(-1).(-1) - 1)}
A = [ 1 - 1] : [-1-1]
A = 0: (-2)
A = 0
Nhớ tick nha

A = \(xy^2z^3+x^2y^3z^4\) + \(x^{2014}y^{2015}z^{2016}\)
Thay \(x=\) -1; y = -1; z = -1 vào A ta có:
A = (-1).(-1)2.(-1)3 + (-1)2.(-1)3.(-1)4 + (-1)2014.(-1)2015.(-1)2016
A = (-1).1(-1) + 1.(-1).1 + 1.(-1).1
A = 1 - 1 - 1
A = -1
A = ��2�3+�2�3�4xy2z3+x2y3z4 + �2014�2015�2016x2014y2015z2016
Thay �=x= -1; y = -1; z = -1 vào A ta có:
A = (-1).(-1)2.(-1)3 + (-1)2.(-1)3.(-1)4 + (-1)2014.(-1)2015.(-1)2016
A = (-1).1(-1) + 1.(-1).1 + 1.(-1).1
A = 1 - 1 - 1
A = -1
tick cho mik nha

a) (5x3 + 7x2y4 + 18y2) + (2x3 - 5x2y4 - 12y2)
= 5x3 + 7x2y4 + 18y2 + 2x3 - 5x2y4 - 12y2
= 7x3 + 2x2y4 + 6y2
Bậc của đa thức là 6
Thay x = 1; y = -1 vào ta có:
7 x 13 + 2 x 12 x (-1)4 + 6 x (-1)4 = 7 x 1 + 2 x 1 x 1 + 6 x 1 = 7 + 2 + 6 = 15
b) \(\left(15x^3y-9x^2y^5+2y^4\right)-\left(18x^3y-6y^4-3x^2y^5\right)\)
\(=15x^3y-9x^2y^5+2y^4-18x^3y+6y^4+3x^2y^5\)
\(=-3x^3y-6x^2y^5+8y^4\)
Bậc của đa thức là 7
Thay x = 1; y = -1 vào ta có:
(-3) x 13 x (-1) - 6 x 12 x (-1)5 + 8 x (-1)4 = (-3) x (-1) - 6 x 1 x (-1) + 8 x 1 = 3 + 6 + 8 = 17

a: \(P\left(x\right)=5x^3-4x+7\)
Bậc 3
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
Bậc 3
b: M(x)=P(x)+Q(x)
=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2
c: M(x)=0
=>2-x^2=0
=>\(x=\pm\sqrt{2}\)

`a,`
`P(x)=5x^3-3x+7-x`
`= 5x^3+(-3x-x)+7`
`= 5x^3-4x+7`
Bậc của đa thức: `3`
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`= -5x^3+(2x+2x)-x^2+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc của đa thức: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=Q(x)+P(x)`
`M(x)=( 5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7-5x^3-x^2+4x-5`
`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`= -x^2+2`
Vậy, `M(x)=-x^2+2`
`c,`
`-x^2+2=0`
`=> -x^2=0-2`
`=> -x^2=-2`
`=> x^2=2`
`=> x= \sqrt {+-2}`
Vậy, nghiệm của đa thức là `x={ \sqrt{2}; -\sqrt {2} }.`
a: P(x)=5x^3-4x+7
Q(x)=-5x^3-x^2+4x-5
b: M(x)=P(x)-Q(x)
=5x^3-4x+7+5x^3+x^2-4x+5
=10x^3+x^2-8x+12

`a,`
`P(x)=5x^3 - 3x + 7 - x`
`= 5x^3 +(-3x-x)+7`
`= 5x^3-4x+7`
Bậc: `3`
`Q(x)=-5x^3 + 2x - 3 + 2x - x^2 - 2`
`= -5x^3-x^2+(2x+2x)+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=P(x)+Q(x)`
`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`
`M(x)=(5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`M(x)=-x^2+2`
`c,`
`M(x)=-x^2+2=0`
`\leftrightarrow -x^2=0-2`
`\leftrightarrow -x^2=-2`
`\leftrightarrow x^2=2`
`\leftrightarrow `\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy, nghiệm của đa thức là \(x=\left\{\sqrt{2};-\sqrt{2}\right\}\)

Bạn Vinh nói đúng: Ta có thể viết đa thức đã cho thành tổng của hai đa thức bậc 4 chẳng hạn như:
P(x) = 5x3 – 4x2 +7x – 2 = (2x4 + 5x3 + 7x) + (–2x4 – 4x2 – 2)
⇒ P(x) là tổng của hai đa thức bậc 4 là: 2x4 + 5x3 + 7x và –2x4 – 4x2 – 2
\(-5x^3+xy^2z^3-5x^3+xy^2z^3\\ =-10x^3+2xy^2z^3\)
vậy đa thức này có bậc 6