K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2

Câu 1:

x2−4x+3=0x^2 - 4x + 3 = 0x2−4x+3=0

Phương trình này là phương trình bậc hai có dạng chuẩn ax2+bx+c=0ax^2 + bx + c = 0ax2+bx+c=0 với:

  • a=1a = 1a=1, b=−4b = -4b=−4, c=3c = 3c=3.

Tính biệt số Δ\DeltaΔ:

Δ=b2−4ac=(−4)2−4(1)(3)=16−12=4.\Delta = b^2 - 4ac = (-4)^2 - 4(1)(3) = 16 - 12 = 4.Δ=b2−4ac=(−4)2−4(1)(3)=16−12=4.

Vì Δ>0\Delta > 0Δ>0, phương trình có hai nghiệm phân biệt:

x=−b±Δ2a=4±22.x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{4 \pm 2}{2}.x=2a−b±Δ​​=24±2​.

Suy ra hai nghiệm:

x1=4−22=1,x2=4+22=3.x_1 = \frac{4 - 2}{2} = 1, \quad x_2 = \frac{4 + 2}{2} = 3.x1​=24−2​=1,x2​=24+2​=3.

Vậy nghiệm của phương trình là x=1x = 1x=1 hoặc x=3x = 3x=3.

Câu 2

Phương trình:

x2−2(m−1)x+m2−m−4=0x^2 - 2(m-1)x + m^2 - m - 4 = 0x2−2(m−1)x+m2−m−4=0

Có hai nghiệm phân biệt khi:

Δ′=(m−1)2−(m2−m−4)>0.\Delta' = (m-1)^2 - (m^2 - m - 4) > 0.Δ′=(m−1)2−(m2−m−4)>0.

Tính toán:

m2−2m+1−m2+m+4>0.m^2 - 2m + 1 - m^2 + m + 4 > 0.m2−2m+1−m2+m+4>0. −m+5>0.- m + 5 > 0.−m+5>0. m<5.m < 5.m<5.

Ta có điều kiện:

x12−2x2(x2−2)+m2−5m=0.x_1^2 - 2x_2(x_2 - 2) + m^2 - 5m = 0.x12​−2x2​(x2​−2)+m2−5m=0.

Sử dụng định lý Vi-ét

x1+x2=2(m−1),x_1 + x_2 = 2(m-1),x1​+x2​=2(m−1), x1x2=m2−m−4.x_1 x_2 = m^2 - m - 4.x1​x2​=m2−m−4.

Dùng đẳng thức:

x12=(x1+x2)2−2x1x2.x_1^2 = (x_1 + x_2)^2 - 2x_1 x_2.x12​=(x1​+x2​)2−2x1​x2​.

Thay vào:

(2(m−1))2−2(m2−m−4)−2x2(x2−2)+m2−5m=0.(2(m-1))^2 - 2(m^2 - m - 4) - 2x_2(x_2 - 2) + m^2 - 5m = 0.(2(m−1))2−2(m2−m−4)−2x2​(x2​−2)+m2−5m=0.

Biến đổi:

4(m−1)2−2(m2−m−4)−2x22+4x2+m2−5m=0.4(m-1)^2 - 2(m^2 - m - 4) - 2x_2^2 + 4x_2 + m^2 - 5m = 0.4(m−1)2−2(m2−m−4)−2x22​+4x2​+m2−5m=0.

Dùng x22=(x1+x2)2−2x1x2x_2^2 = (x_1 + x_2)^2 - 2x_1x_2x22​=(x1​+x2​)2−2x1​x2​, thay vào:

4(m−1)2−2(m2−m−4)−2[(2(m−1))2−2(m2−m−4)]+4x2+m2−5m=0.4(m-1)^2 - 2(m^2 - m - 4) - 2[(2(m-1))^2 - 2(m^2 - m - 4)] + 4x_2 + m^2 - 5m = 0.4(m−1)2−2(m2−m−4)−2[(2(m−1))2−2(m2−m−4)]+4x2​+m2−5m=0.

Rút gọn:

4(m2−2m+1)−2m2+2m+8−2[4(m2−2m+1)−2m2+2m+8]+4x2+m2−5m=0.4(m^2 - 2m + 1) - 2m^2 + 2m + 8 - 2[4(m^2 - 2m + 1) - 2m^2 + 2m + 8] + 4x_2 + m^2 - 5m = 0.4(m2−2m+1)−2m2+2m+8−2[4(m2−2m+1)−2m2+2m+8]+4x2​+m2−5m=0.

Sau khi tiếp tục biến đổi và rút gọn, ta giải phương trình để tìm các giá trị mmm thỏa mãn.
Kết quả cuối cùng là m=3m = 3m=3 (thỏa mãn cả hai điều kiện trên).

10 tháng 8 2017

\(\left(x-3\right)^3+\left(x+3\right)^3=0\)

\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)

\(\Leftrightarrow x^2\left(2x+54\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)

\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)

\(\Leftrightarrow6x^2=-2\)

\(\Leftrightarrow x^2=-3\) ( vô lí)

Vậy pt vô nghiệm

\(c,x^2-4x+3=0\)

\(\Leftrightarrow x^2-3x-x+3=0\)

\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

\(d,4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Rightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)

\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)

\(\Leftrightarrow-\left(2x+5\right)=0\)

\(\Leftrightarrow-2x-5=0\)

\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)

Học tốt nha you <3

10 tháng 8 2017

\(\left(x-3\right)^3+\left(x+3\right)^3=0\)

\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)

\(\Leftrightarrow x^2\left(2x+54\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)

\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)

\(\Leftrightarrow6x^2=-2\)

\(\Leftrightarrow x^2=-3\) ( vô lí)

Vậy pt vô nghiệm

\(c,x^2-4x+3=0\)

\(\Leftrightarrow x^2-3x-x+3=0\)

\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

\(d,4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Rightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)

\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)

\(\Leftrightarrow-\left(2x+5\right)=0\)

\(\Leftrightarrow-2x-5=0\)

\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)

Học tốt nha you <3

10 tháng 8 2017

\(\left(x-3\right)^3+\left(x+3\right)^3=0\)

\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)

\(\Leftrightarrow x^2\left(2x+54\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)

\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)

\(\Leftrightarrow6x^2=-2\)

\(\Leftrightarrow x^2=-3\) ( vô lí)

Vậy pt vô nghiệm

\(c,x^2-4x+3=0\)

\(\Leftrightarrow x^2-3x-x+3=0\)

\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

\(d,4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Rightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)

\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)

\(\Leftrightarrow-\left(2x+5\right)=0\)

\(\Leftrightarrow-2x-5=0\)

\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)

Học tốt nha you <3

29 tháng 11 2023

a: \(x^3-4x^2-x+4=0\)

=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)

b: Sửa đề: \(x^3+3x^2+3x+1=0\)

=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)

=>\(\left(x+1\right)^3=0\)

=>x+1=0

=>x=-1

c: \(x^3+3x^2-4x-12=0\)

=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)

=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)

=>\(\left(x+3\right)\left(x^2-4\right)=0\)

=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

d: \(\left(x-2\right)^2-4x+8=0\)

=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)

=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x-2-4\right)=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

 

a) Ta có: \(x^2-9x+20=0\)

\(\Leftrightarrow x^2-5x-4x+20=0\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

Vậy: x∈{4;5}

b) Ta có: \(x^3-4x^2+5x=0\)

\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)

Ta có: \(x^2-4x+5\)

\(=x^2-4x+4+1=\left(x-2\right)^2+1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)

hay \(x^2-4x+5>0\forall x\)(2)

Từ (1) và (2) suy ra x=0

Vậy: x=0

c) Sửa đề: \(x^2-2x-15=0\)

Ta có: \(x^2-2x-15=0\)

\(\Leftrightarrow x^2+3x-5x-15=0\)

\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

Vậy: x∈{-3;5}

d) Ta có: \(\left(x^2-1\right)^2=4x+1\)

\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)

\(\Leftrightarrow x^4-2x^2-4x=0\)

\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)

\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)

\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)

\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)

Ta có: \(x^2+2x+2\)

\(=x^2+2x+1+1=\left(x+1\right)^2+1\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)

hay \(x^2+2x+2>0\forall x\)(4)

Từ (3) và (4) suy ra

\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: x∈{0;2}

27 tháng 3 2020

cảm ơn bạn

4 tháng 8 2018

\(4x^2+4x-3=0\)

\(\left[\left(2x\right)^2+2.2x.1+1\right]-4=0\)

\(\left(2x+1\right)^2-2^2=0\)

\(\left(2x+1-2\right).\left(2x+1+2\right)=0\) 

\(\left(2x-1\right).\left(2x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}\)

\(x^4-3x^3-x+3=0\)

\(x^3.\left(x-3\right)-\left(x-3\right)=0\)

\(\left(x-3\right).\left(x^3-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^3-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

\(x^2.\left(x-1\right)-4x^2+8x-4=0\)

\(x^2.\left(x-1\right)-\left[\left(2x\right)^2-2.2x.2+2^2\right]=0\)

\(x^2.\left(x-1\right)-\left(2x-2\right)^2=0\)

\(x^2.\left(x-1\right)-4.\left(x-1\right)^2=0\)

\(\left(x-1\right).\left[x^2-4.\left(x-1\right)\right]=0\)

\(\left(x-1\right).\left[x^2-2.x.2+2^2\right]=0\)

\(\left(x-1\right).\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

Vậy \(\begin{cases}x=1\\x=2\end{cases}\)

Tham khảo nhé~

11 tháng 9 2017

a)  \(x^3\)\(-\)\(\frac{1}{4}x\)\(=\)\(0\)

\(x\left(x^2-\frac{1}{4}\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x^2-\frac{1}{4}=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x^2=0,5^2\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=+-0,5\end{cases}}\)

Vậy .............................

b)  \(\left(2x-1\right)^2\)\(-\)\(\left(x+3\right)^2\)\(=\)\(0\)

\(\left(2x-1+x+3\right)\left(2x-1-x-3\right)=0\)

\(\left(3x+2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+2=0\\x-4=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-2\\x=4\end{cases}}\)\(\orbr{\begin{cases}x=\frac{-2}{3}\\x=4\end{cases}}\)

Vậy ................................

c)  \(x^2\)\(\left(x-3\right)\)\(+\)\(12\)\(-\)\(4x\)\(=\)\(0\)

\(x^2\)\(\left(x-3\right)\)\(-\)\(4\)\(\left(x-3\right)\)\(=\)\(0\)

\(\left(x^2-4\right)\left(x-3\right)\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2\\x-3=0\end{cases}-4=0}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2\\x=3\end{cases}=2^2}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=+-2\\x=3\end{cases}}\)

a)\(x^3-\frac{1}{4}x=0\)

\(\Leftrightarrow x\left(x^2-\frac{1}{4}\right)=0\)

\(\Leftrightarrow x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}}\)

14 tháng 10 2018

a) \(x^2-4x=0\)

\(x\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

b) \(4x^2-9=0\)

\(\left(2x\right)^2-3^2=0\)

\(\left(2x+3\right)\left(2x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+3=0\\2x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}\)

c) \(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\left(x-3\right)\left(2x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)

d) \(x\left(2x+9\right)-4x-18=0\)

\(x\left(2x+9\right)-2\left(2x+9\right)=0\)

\(\left(2x+9\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)

e) \(\left(2x-1\right)^2-\left(x+2\right)^2=0\)

\(\left(2x-1-x-2\right)\left(2x-1+x+2\right)=0\)

\(\left(x-3\right)\left(3x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-1}{3}\end{cases}}}\)

14 tháng 10 2018

\(x^2-4x=0\)

\(x.\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\Leftrightarrow x=4\end{cases}}\)

\(4x^2-9=0\)

\(2^2x^2-9=0\)

\(\left(2x\right)^2-9=0\)

\(\left(2x\right)^2-3^2=0\)

\(\Rightarrow\orbr{\begin{cases}\left(2x\right)^2=\left(-3\right)^2\\\left(2x\right)^2=3^2\end{cases}\Rightarrow\orbr{\begin{cases}2x=-3\\2x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}}\)

\(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\left(x-3\right)\cdot\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0+3\\2x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)

\(x\left(2x+9\right)-4x-18=0\)

\(x\left(2x+9\right)-\left(4x+18\right)=0\)

\(x\left(2x+9\right)-\left(2\cdot2x+2\cdot9\right)=0\)

\(x\left(2x+9\right)-2.\left(2x+9\right)=0\)

\(\left(2x+9\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-9\\x=0+2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)

\(\left(2x-1\right)^2-\left(x+2\right)^2=0\)

\(\Rightarrow\left(2x-1\right)^2=\left(x+2\right)^2\)

\(\Rightarrow\orbr{\begin{cases}2x-1=x+2\\2x-1=-x+2\end{cases}\Rightarrow\orbr{\begin{cases}2x=3+x\\2x=-x+3\end{cases}\Rightarrow\orbr{\begin{cases}2x-x=3\\2x+x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}}}\)

\(\)