A=\(\frac{1}{20.21}+\frac{1}{21.22}+\cdots+\frac{1}{99.100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có:
\(\frac{1}{20.21}+\frac{1}{21.22}+\frac{1}{22.23}+...+\frac{1}{60.61}\)
\(=\frac{1}{20}-\frac{1}{21}+\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+...+\frac{1}{60}-\frac{1}{61}\)
\(=\frac{1}{2}-\frac{1}{61}=\frac{59}{122}\)
b) \(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{45.49}\)
\(=\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{45.49}\)
\(=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{45}-\frac{1}{49}\)
\(=\frac{1}{5}-\frac{1}{49}=\frac{44}{245}\)
Bn Tấn sai rùi
phần a , câu cuối là \(\frac{1}{20}\)chứ đâu phải \(\frac{1}{2}\)


=-2. \(\left(\frac{-3}{2}\right).\left(\frac{-4}{3}\right).....\left(\frac{-2010}{2009}\right).\left(\frac{-2011}{2010}\right)\)
=\(\frac{\left(-2\right).\left(-3\right).\left(-4\right).....\left(-2010\right).\left(-2011\right)}{1.2.3.....2009.2010}\)
=\(\frac{\left(-1\right).\left(-1\right).\left(-1\right).....\left(-1\right).\left(-1\right).\left(-2011\right)}{1.1.1.....1.1}\)
=\(\frac{\left(-1\right)^{2009}.\left(-2011\right)}{1}\)
=\(\frac{\left(-1\right).\left(-2011\right)}{1}=\frac{2011}{1}=2011\)

Đặt \(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{21.22}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{21}-\frac{1}{22}\)
\(A=\frac{1}{5}-\frac{1}{22}\)
\(A=\frac{17}{110}\)
\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+...+\(\frac{1}{21.22}\)
=\(\frac{1}{5}\)-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{7}\)+...+\(\frac{1}{21}\)-\(\frac{1}{22}\)
=\(\frac{1}{5}\)-\(\frac{1}{22}\)
=\(\frac{17}{110}\)

\(12-10,34.\frac{3}{13}\left(x-1\right)=\left(\frac{1}{21.22}+\frac{1}{22.23}+...+\frac{1}{29.30}\right)280\)
<=> \(12-10,34.\frac{3}{13}\left(x-1\right)=\left(\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+...+\frac{1}{29}-\frac{1}{30}\right).280\)
<=> \(12-10,34.\frac{3}{13}\left(x-1\right)=\left(\frac{1}{21}-\frac{1}{30}\right)280\)
<=> \(12-10,34.\frac{3}{13}\left(x-1\right)=4\)
<=> \(8=10,34.\frac{3}{13}.\left(x-1\right)\)
<=> \(x-1=\frac{5200}{1551}\)
<=> \(x=\frac{6751}{1551}\)
Ta có:
\(\frac{1}{21.22}+\frac{1}{22.23}+...+\frac{1}{29.30}=\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+...+\frac{1}{29}-\frac{1}{30}=\frac{1}{21}-\frac{1}{30}\)
phương trình đã cho trở thành
\(12-10,34.\frac{3}{13}\left(x-1\right)=\left(\frac{1}{21}-\frac{1}{30}\right).280\)
\(\Leftrightarrow x-1=\frac{\left(\frac{1}{21}-\frac{1}{30}\right).280-12}{-10,34.\frac{3}{13}}\Leftrightarrow x=\frac{\left(\frac{1}{21}-\frac{1}{30}\right).280-12}{-10,34.\frac{3}{13}}+1\)
\(\Leftrightarrow x=\frac{6751}{1551}\)

\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)
\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)
`A = 1/(20.21) + 1/(21.22) + .... + 1/(99.100)`
`= 1/20 - 1/21 + 1/21 - 1/22 + ... + 1/99 - 1/100`
`= 1/20 - 1/100`
`= 4/100`
`= 1/25`
A=1/20 - 1/21 + 1/21 - 1/22 +...+ 1/99 - 1/100
A= 1/20 - 1/100
A= 5/100 - 1/100
A=4/100
A=1/25