Chứng minh IG vuông góc với CM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.b.xét tam giác vuông BNC và tam giác vuông CMB có:
góc B = góc C ( gt )
BC: cạnh chung
Vậy tam giác vuông BNC = tam giác vuông CMB ( cạnh huyền.góc nhọn )
=> BM = CN ( 2 cạnh tương ứng )
xét tam giác vuông AMI và tam giác vuông ANI có:
A: góc chung
AI: cạnh chung
Vậy tam giác vuông AMI = tam giác vuông ANI ( cạnh huyền. góc nhọn )
=> AM = AN ( 2 cạnh tương ứng )
=> tam giác AMN cân tại A
=> AI là tia phân giác góc BAC
c. xét tam giác vuông BMI và tam giác vuông CNI có:
BM = CN ( cmt )
BI = CI ( tam giác BNC = tam giác CMB )
Vậy tam giác vuông BMI = tam giác vuông CNI ( cạnh huyền. góc nhọn )
d. ta có: AI là phân giác cũng là đường cao trong 2 tam giác cân ABC và AMN
=> AI vuông với MN và BC
=> MN // BC ( 2 cạnh cùng vuông với một cạnh )
Chúc bạn học tốt!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
cho tam giác ABC vuông tại A đường cao AH. Kẻ HD, HE lần lượt vuoobg góc với AB,AC. Laaysddieemr M nằm giữa C và E, Kẻ AI vuông góc với BM tại I. Chứng minh sin AMB . sinACB = HI/CM
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔANH vuông tại N và ΔAHC vuông tại H có
góc NAH chung
Do đó: ΔANH\(\sim\)ΔAHC
b: \(HC=\sqrt{15^2-12^2}=9\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔBEM vuông tại E và ΔBKM vuông tại K có
BM chung
góc KBM=góc EBM
=>ΔBEM=ΔBKM
=>ME=MK
b: Xét ΔCKM vuông tại K và ΔCFM vuông tại F có
CM chung
góc KCM=góc FCM
=>ΔCKM=ΔCFM
=>MK=MF=ME
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
ME=MF
=>ΔAEM=ΔAFM
=>góc EAM=góc FAM
=>AM là phân giác của góc BAC
Thiếu đầu bài bạn nhé.
Bạn phải cho đầy đủ dữ kiện của đầu bài mới có thể chứng minh IG vuông góc với CM