K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2024

???

30 tháng 12 2021

Số hạng chia hết cho a có dạng x = a.k (k ∈ N)

Do đó số hạng chia hết cho 3 có dạng x = 3k (k ∈ N)

30 tháng 12 2021

Chọn A

14 tháng 1 2018

a) \(n+1\inƯ\left(n^2+2n-3\right)\)

\(\Leftrightarrow n^2+2n-3⋮n+1\)

\(\Leftrightarrow n\left(n+1\right)+n-3⋮n+1\)

\(n\left(n+1\right)⋮n+1\Rightarrow n-3⋮n+1\)

\(\Leftrightarrow n+1-4⋮n+1\)

\(n+1⋮n+1\Rightarrow-4⋮n+1\Rightarrow n+1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\) \(-2\) \(2\) \(-4\) \(4\)
\(n\) \(-2\) \(0\) \(-3\) \(1\) \(-5\) \(3\)

Vậy...

b) \(n^2+2\in B\left(n^2+1\right)\)

\(\Leftrightarrow n^2+2⋮n^2+1\)

\(\Leftrightarrow n^2+1+1⋮n^2+1\)

\(n^2+1⋮n^2+1\) nên \(1⋮n^2+1\Rightarrow n^2+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n^2+1\) \(-1\) \(1\)
\(n\) \(\sqrt{-2}\) (vô lý, vì 1 số ko âm mới có căn bậc hai)

\(0\) (tm)

Vậy \(n=0\)

c) \(2n+3\in B\left(n+1\right)\)

\(\Leftrightarrow2n+3⋮n+1\)

\(\Leftrightarrow2n+2+1⋮n+1\)

\(\Leftrightarrow2\left(n+1\right)+1⋮n+1\)

\(2\left(n+1\right)⋮n+1\) nên \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\)
\(n\) \(-2\) \(0\)

Vậy...

18 tháng 1 2018

a) n+1∈Ư(n2+2n−3)n+1∈Ư(n2+2n−3)

⇔n2+2n−3⋮n+1⇔n2+2n−3⋮n+1

⇔n(n+1)+n−3⋮n+1⇔n(n+1)+n−3⋮n+1

n(n+1)⋮n+1⇒n−3⋮n+1n(n+1)⋮n+1⇒n−3⋮n+1

⇔n+1−4⋮n+1⇔n+1−4⋮n+1

n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}n+1⋮n+1⇒−4⋮n+1⇒n+1∈Ư(−4)={−1;1;−2;2;−4;4}

Ta có bảng sau:

n+1n+1 −1−1 11 −2−2 22 −4−4 44
nn −2−2 00 −3−3 11 −5−5 33

Vậy...

b) n2+2∈B(n2+1)n2+2∈B(n2+1)

⇔n2+2⋮n2+1⇔n2+2⋮n2+1

⇔n2+1+1⋮n2+1⇔n2+1+1⋮n2+1

n2+1⋮n2+1n2+1⋮n2+1 nên 1⋮n2+1⇒n2+1∈Ư(1)={−1;1}1⋮n2+1⇒n2+1∈Ư(1)={−1;1}

Ta có bảng sau:

n2+1n2+1 −1−1 11
nn √−2−2 (vô lý, vì 1 số ko âm mới có căn bậc hai)

00 (tm)

Vậy n=0n=0

c) 2n+3∈B(n+1)2n+3∈B(n+1)

⇔2n+3⋮n+1⇔2n+3⋮n+1

⇔2n+2+1⋮n+1⇔2n+2+1⋮n+1

⇔2(n+1)+1⋮n+1⇔2(n+1)+1⋮n+1

2(n+1)⋮n+12(n+1)⋮n+1 nên 1⋮n+1⇒n+1∈Ư(1)={−1;1}1⋮n+1⇒n+1∈Ư(1)={−1;1}

Ta có bảng sau:

n+1n+1 −1−1 11
nn −2−2 00
30 tháng 10 2023

a) 2; 3; 4

b) 1; 2; 3

12 tháng 12 2016

a. Đ ; b.Đ ; c.S ; d.Đ ; e.S ; f.S ; g. Đ ; h.S ; i. S ; j. Đ

12 tháng 12 2016

a) Đ

b) Đ

c) S

d) Đ

e) S

f) S

g) Đ

h) S

i) S

j) Đ

Chọn C

15 tháng 3 2023

bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
 cũng bị ép);-;

AH
Akai Haruma
Giáo viên
30 tháng 6 2023

Lời giải:
Điều kiện: $x\neq 3$

Để $A=\frac{2(x-3)+5}{3-x}=-2+\frac{5}{3-x}$ nguyên thì $\frac{5}{3-x}$ nguyên. 

Với $x$ nguyên thì điều này xảy ra khi $3-x$ là ước của $5$

$\Rightarrow 3-x\in\left\{\pm 1; \pm 5\right\}$

$\Rightarrow x\in\left\{4; 2; 8; -2\right\}$ (thỏa mãn)

24 tháng 10 2021

a: Trường hợp 1: x=3k

\(\Leftrightarrow A=\left(3k+3\right)\left(3k+7\right)\left(3k+11\right)⋮3\)

Trường hợp 2: x=3k+1

\(\Leftrightarrow A=\left(3k+4\right)\left(3k+8\right)\left(3k+12\right)⋮3\)

Trường hợp 3: x=3k+2

\(\Leftrightarrow A=\left(3k+5\right)\left(3k+9\right)\left(3k+13\right)⋮3\)

27 tháng 10 2021

a) Đ

b) S

c) S

d) Đ

e) Đ

g) Đ

5 tháng 8 2016

Để phân số là số nguyên thì

21n+1 chia hết cho 14n+3

\(\Leftrightarrow3\left(14n+3\right)-2\left(21n+1\right)\) chia hết cho 14n+3

\(\Leftrightarrow42n+9-42n-2\) chia hết cho 14n+3

<=> 7 chia hết cho 14n+3

Mà 14n chia hết cho 7

3 không chia hết cho 7

=> 14n+3  không chia hết cho 7

=> \(n\in\varnothing\)