Cho ΔABC vuông tại A, đường cao AH. Tính AB, AC biết HB=1cm, HC=2cm nhanh nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng hệ thức liên quan tới đường cao vào \(\Delta ABC\), ta có:
\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{1}=4\left(cm\right)\)
Mặt khác, áp dụng định lý Pytago vào \(\Delta BHA\), ta có:
\(AB^2=AH^2+BH^2\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{2^2+1}=\sqrt{5}\left(cm\right)\)
Áp dụng hệ thức giữa đường cao và các cạnh vào \(\Delta ABC\), ta có:
\(AB.AC=AH.BC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{2.\left(1+4\right)}{\sqrt{5}}=2\sqrt{5}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
nên \(HC=\dfrac{2^2}{1}=4\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AC^2=HC\cdot BC\)
nên \(AC^2=20\)
hay \(AC=2\sqrt{5}\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(BC=BH+HC=5\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{CH\cdot BC}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b, Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=2\left(cm\right)\)
a: BC=4+1=5(cm)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b: \(AH=\sqrt{HB\cdot HC}=2\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(BC=BH+HC=8\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=2\cdot8=16\left(cm\right)\\AC^2=2\cdot6=12\left(cm\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=4\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:
\(AH^2=BH.HC\Rightarrow AH=\sqrt{BH.HC}=\sqrt{2.6}=2\sqrt{3}\left(cm\right)\)
Áp dụng đ/lý Pytago trong tam giác vg ABH và AHC
\(\left\{{}\begin{matrix}AB^2=AH^2+HB^2=16\\AC^2=AH^2+HC^2=48\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AB=4cm\\AC=4\sqrt{3}cm\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\)
tam giác ABC vuông tại A nên áp dụng Py-ta-go
\(\Rightarrow BC^2=AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=\dfrac{25}{16}AC^2\)
\(\Rightarrow10000=\dfrac{25}{16}AC^2\Rightarrow AC^2=6400\Rightarrow AC=80\left(cm\right)\)
\(\Rightarrow AB=\dfrac{3}{4}.80=60\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{60.80}{100}=48\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{60^2}{100}=36\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{80^2}{100}=64\left(cm\right)\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)
nên \(AB=\dfrac{3}{4}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\left(\dfrac{3}{4}AC\right)^2+AC^2=100^2\)
\(\Leftrightarrow\dfrac{25}{16}AC^2=10000\)
\(\Leftrightarrow AC^2=6400\)
hay AC=80(cm)
\(\Leftrightarrow AB=\dfrac{3}{4}\cdot AC=\dfrac{3}{4}\cdot80=60\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot100=60\cdot80=4800\)
hay AH=48(cm)
Áp dụng định lí Pytago vào ΔABH vuông tại H,ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=60^2-48^2=1296\)
hay BH=36(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=100-36=64(cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Anh bổ sung là : AH vuông góc với BC nhé
\(BC=HB+HC=2+8=10\left(cm\right)\)
\(\text{Áp dụng định lý Pytago trong tam giác ABC vuông tại A:}\)
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
Bổ sung đề \(AH\) là đường cao.
Áp dụng hệ thức lượng vào tam giác vuông \(ABC\) và đường cao \(AH\) ta có :
\(AB^2=BC.BH\)
\(\Rightarrow AB=\sqrt{BC.BH}=\sqrt{\left(8+2\right).2}=\sqrt{20}=2\sqrt{5}\)\((cm)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
BC=13cm
=>\(AC=3\sqrt{13}\left(cm\right)\)
Ai giúp tui với
Theo đề ra: HB = 1cm
HC = 2cm
Ta có: BC = HB + HC
BC = 1cm + 2cm
BC = 3cm
Theo đề ra: ΔABC vuông tại A, đường cao AH
\(\rightarrow AB^2=BH.BC=1.3=3\)
\(\rightarrow AB=\sqrt{3}\)
\(\rightarrow AC^2=CH.BC=2.3=6\)
\(\rightarrow AC=\sqrt{6}\)