tìm số dư của phép chia 3^2003 cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


33 = 27 = 1 (mod 13)
=> (33)667 = 1667 (mod 13)
=> 32001 = 1 (mod 13)
=> 32001.32 = 1.32 (mod 13)
=> 32003 = 9 (mod 13)
bài làm
33 = 27 = 1 (mod 13)
=> (33)667 = 1667 (mod 13)
=> 32001 = 1 (mod 13)
=> 32001.32 = 1.32 (mod 13)
=> 32003 = 9 (mod 13)
vậy ....................
hok tốt


Có : 3^2003 = 3^2001.3^2 = (3^3)^667.9 = 27^667.9 = 27^667.9-9+9=9.(27^667-1)+9
Ta thấy 27^667-1 = 27^667-1^667 chia hết cho 27-1=26
=> 27^667-1 chia hết cho 13
=> 3^2003 chia 13 dư 9
Tk mk nha

Có : 3^2003 = (3^2001).3^2 = (3^3)^667.9 = 27^667 . 9
Áp dụng tính chất a^n-b^n chia hết cho a-b với a,b,n thuộc N sao thì :
27^667.9 - 9 = 9.(27^667-1) = 9.(27^667-1^667) chia hết cho 27-1 = 26
Mà 26 chia hết cho 13 => 27^667.9-9 chia hết cho 13
=> 3^2003-9 chia hết cho 13
=> 3^2003 chia 13 dư 9
Tk mk nha

b3 là số 100 là số hạng thứ 32,còn lại tự giải ,lươì làm thế
mấy ti.ck thế,nếu làm nhiều mà được mỗi cái thì hơi phí công,ko biết

Lời giải:
Theo định lý Fermat thì:
$2002^{18}\equiv 1\pmod {19}$
$\Rightarrow (2002^{18})^{111}.2002^5\equiv 2002^5\pmod {19}$
$2002\equiv 7\pmod {19}$
$\Rightarrow 2002^5\equiv 7^5\equiv 11\pmod {19}$
Vậy $2002^{2003}$ chia $19$ dư $11$