K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=n^4-4n^3-2n^2+12n+9\)

\(=n^4-2n^3-3n^2-2n^3+4n^2+6n-3n^2+6n+9\)

\(=n^2\left(n^2-2n-3\right)-2n\left(n^2-2n-3\right)-3\left(n^2-2n-3\right)\)

\(=\left(n^2-2n-3\right)\left(n^2-2n-3\right)=\left(n^2-2n-3\right)^2\)

=>A là số chính phương

17 tháng 10 2021

chịu thua luôn

29 tháng 11 2021

\(=\left(2n^2+5n\right)\left(2n^2+5n\right)+12\left(2n^2+5n\right)+36=\left(2n^2+5n\right)^2+2.\left(2n^2+5n\right).6+6^2=\left(2n^2+5n+6\right)^2\)

17 tháng 2 2019

\(A=\left(2n^2\right)^2+2.\left(2n^2\right).\left(3n\right)+\left(3n\right)^2-4n^2-6n+1\)

\(=\left(2n^2+3n\right)^2-2.\left(2n^2+3n\right)+1=\left(2n^2+3n-1\right)^2\)

8 tháng 8 2017

a,A=(x+1)(x+2)(x+3)(x+4)+1

=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)

đặt x2+5x+5=a ta có

A=(a-1)(a+1)+1

=a2-1+1=a2

thay a =x2+5x+5 ta có A=(x2+5x+5)2

vì x nguyên nên x2+5x+5 nguyên 

vậy A là bình phương của 1 số nguyên với mọi x nguyên

b,B=x4-4x3-2x2+12x+9

=x4+x3-5x3-5x2+3x2+3x+9x+9

=x3(x+1)-5x2(x+1)+3x(x+1)+9(x+1)

=(x+1)(x3-5x2+3x+9)

=(x+1)(x3+x2-6x2-6x+9x+9)

=(x+1)[x2(x+1)-6x(x+1)+9(x+1)]

=(x+1)(x+1)(x2-6x+9)

=(x+1)2(x+3)2

vì x nguyên nên x+1 nguyên;x+3 nguyên

vậy B là bình phương củ một số nguyên với mọi x nguyên

15 tháng 5 2021

Bài 2:

\(\left(2n+3\right)^2-9\)

\(\rightarrow4n^2+12n+9-9\)

\(\rightarrow4n^2=12n\)

\(\rightarrow4n.\left(n+3\right)\)

\(\rightarrow4⋮4\)

\(\rightarrow4n⋮4\)

\(\rightarrow4n.\left(n+3\right)⋮4\)

\(\rightarrow\left(2n+3\right)^2-9⋮4\)

5 tháng 3 2020

Ta có \(M=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(\Leftrightarrow M=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(t=x^2+5x+5\)Khi đó

\(M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)

Vì x nguyên nên \(x^2+5x+5\)nguyên \(\Rightarrow\left(x^2+5x+5\right)^2\)là bình phương của 1 số nguyên (đccm)

Hok tốt!!

5 tháng 3 2020

a,M=(x+1)(x+2)(x+3)(x+4)+1

=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)

đặt x2+5x+5=a ta có

M=(a-1)(a+1)+1

=a2-1+1=a

thay a =x2+5x+5 ta có A=(x2+5x+5)

  vậy M là bình phương của 1 số nguyên với mọi x nguyên

vì x nguyên nên x2+5x+5 nguyên 

a: \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\cdot\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)=2n\cdot2\left(n+3\right)=4n\left(n+3\right)\)

Vì n;n+3 có khoảng cách giữa hai số là 3 là số lẻ

nên n(n+3)⋮2

=>4n(n+3)⋮4*2=8

=>\(\left(2n+3\right)^2-9\) ⋮8

b: \(\left(4n+3\right)^2-25\)

\(=\left(4n+3+5\right)\left(4n+3-5\right)\)

=(4n+8)(4n-2)

\(=4\left(n+2\right)\cdot2\cdot\left(2n-1\right)=8\left(n+2\right)\left(2n-1\right)\) ⋮8

2A = (3+1)(3-1)(3^2+1)(3^4+1)...(3^64+1)

2A= (3^2-1)(3^2+1)(3^4+1)...(3^64+1)

Cứ tiếp tục như thế ta dc

2A= 3^128 -1

A = (3^128-1)/2

7 tháng 2 2020

chào bố :Đ