Tìm tất cả các số tự nhiên biết khi xóa đi 1 chữ số thì số đó giảm đi 2016 đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Giải
Gọi số đó là abcd. Theo đề ta có :
abcd ab 4455 - Từ đây suy ra a = 4. Vậy có 2 trường hợp: có nhớ và không nhớ. Nếu là trường hợp 1 thì c = 0, từ đó b = 5, d = 0. Vậy 4500 - 45 = 4455 ( đúng ). Trong trường hợp 2 thì dễ dàng tìm được c = 9, b = 4, d = 9. Ta có : 4499 - 44 = 4455 ( đúng ). Vậy có 2 đáp án. Đáp số : 4500 và 4499
2) Giải :
Gọi số đó là abc. Theo đề ta có :
abc bc 7 Vậy c có thể là 5 hoặc 0. b chỉ có thể là 5 ( nếu b = 0 thì không đúng với yêu cầu ). Vậy số đó là : 7 50 = 350 Đáp số : 350
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số cần tìm là \(\overline{Abc}\) theo đề bài
\(\overline{Abc}-A=53769\)
\(\Rightarrow100xA+\overline{bc}-A=53769\)
\(\Rightarrow99xA=53769-\overline{bc}\)
Ta thấy \(99xA⋮99\Rightarrow53769-\overline{bc}⋮99\)
\(53769-\overline{bc}=53757+12-\overline{bc}\)
Ta thấy \(53757=99x543⋮99\Rightarrow12-\overline{bc}⋮99\Rightarrow12-\overline{bc}=0\Rightarrow\overline{bc}=12\)
\(\Rightarrow99xA=53769-\overline{bc}=53769-12=53757\Rightarrow A=53757:99=543\)
Số cần tìm là 54312
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số đó là : ab3
Theo đề ra , ta có :
ab3 - ab = 705
ab x 10 + 3 - ab x 1 = 705
ab x 10 - ab x 1 = 705 - 3
ab x 10 - ab x 1 = 702
ab x 9 = 702
=> ab = 702 : 9
=> ab = 78
=> ab = 78
Vậy số cần tìm là 783
gọi số phải tìm là: ab3
theo đề bài : ab3 = ab + 705
ab x 10 + 3 = ab + 705
ab x 10 - ab x 1 = 705 -3
ab x 9 = 702
=> ab = 702:9
=> ab = 78
VẬY SỐ PHẢI TÌM LÀ :\(783\)
THẤY ĐÚNG CHO MK XIN TÍCH NHA !
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số cần tìm có dạng là \(X=\overline{abcd}\)
Khi xóa đi chữ số hàng chục và hàng đơn vị của một số tự nhiên thì số đó giảm đi 3663 đơn vị nên ta có:
\(\overline{abcd}-\overline{ab}=3663\)
=>\(1000a+100b+10c+d-10a-b=3663\)
=>\(990a+99b+10c+d=3663\)
=>(a,b,c,d)=(3;6;9;9); (a,b,c,d)=(3;7;0;0)
Vậy: Hai số cần tìm là 3699 và 3700
![](https://rs.olm.vn/images/avt/0.png?1311)
Số có 4 chữ số có dạng: \(\overline{abcd}\)
Khi ta xóa đi chữ số hàng chục và hàng đơn vị thì ta được số mới là:
\(\overline{ab}\)
Theo bài ra ta có: \(\overline{abcd}\) - \(\overline{ab}\) = 1438
\(\overline{ab}\) \(\times\) 100 + \(\overline{cd}\) - \(\overline{ab}\) = 1438
\(\overline{ab}\) \(\times\) 99 + \(\overline{cd}\) = 1438
\(\overline{ab}\) \(\times\) 99 + \(\overline{cd}\) = 1386 + 52
⇒ \(\overline{ab}\) \(\times\) 99 - 1386 = 52 - \(\overline{cd}\)
⇒ \(\overline{ab}\) \(\times\) 99 - 14 \(\times\) 99 = 52 - \(\overline{cd}\)
⇒ 99 \(\times\) ( \(\overline{ab}\) - 14) = 52 - \(\overline{cd}\) ⇒ 52 - \(\overline{cd}\) ⋮ 99
⇒ 52 - \(\overline{cd}\) = 0 ⇒ \(\overline{cd}\) = 52 vào biểu thức
99 \(\times\) (\(\overline{ab}\) - 14) = 52 - \(\overline{cd}\) ta có:
99 \(\times\) ( \(\overline{ab}\) - 14) = 52 - 52 = 0
⇒ \(\overline{ab}\) - 14 = 0 ⇒ \(\overline{ab}\) = 14
Thay \(\overline{ab}\) = 14 và \(\overline{cd}\) = 52 vào biểu thức: \(\overline{abcd}\) = 1452
Kết luận số cần tìm là 1452
Thử lại kết quả ta có: Khi bỏ bớt chữ số hàng đơn vị và hàng chục của số đó ta được số mới là 14
Số đó giảm là: 1452 - 14 = 1438 (ok)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số tự nhiên cần tìm có 3 chữ số là \(\overline{abc}\left(a,b,c\in N;\right)a\ne0\)*
Theo bài ra, ta có: \(\overline{ab}+299=\overline{abc}\)
\(a\times10+b+299=a\times100+b\times10+c\)
\(299=a\times100+b\times10+c-a\times10-b\)
\(299=a\times90+b\times9+c\)
=> \(a< 4\) => \(a=3\)
Ta có: \(299=3\times90+b\times9+c\)
=> \(299-270=b\times9+c\)
\(29=b\times9+c\)
=> \(b< 4\) =>\(b=3\)
Ta có: \(29=3\times9+c\)
\(29-27=c\)
=> \(c=2\)
Vậy số tự nhiên có 3 chữ số cần tìm là 332
Số có ba chữ số có dạng: \(\overline{abc}\)
Khi bỏ chữ số ở hàng đơn vị đi ta được số mới là: \(\overline{ab}\)
Theo bài ra ta có: \(\overline{abc}\) - \(\overline{ab}\) = 299
( \(\overline{ab}\) \(\times\) 10 - \(\overline{ab}\)) + \(c\) = 299
\(\overline{ab}\) \(\times\) ( 10 - 1) + \(c\) = 299
\(\overline{ab}\) \(\times\) 9 + \(c\) = 299
\(\overline{ab}\) \(\times\) 9 + \(c\) = 297 + 2
\(c\) - 2 = 297 - \(\overline{ab}\) \(\times\) 9
\(c-2\) = 9 \(\times\) ( 33 - \(\overline{ab}\))
⇒ \(c-2\) ⋮ 9 ⇒ \(c\) = 2.
Thay \(c\) = 2 vào biểu thức \(c-2\) = 9 \(\times\)( 33 - \(\overline{ab}\)) ta có:
2 - 2 = 9 \(\times\) (33 - \(\overline{ab}\))
0 = 9 \(\times\) (33- \(\overline{ab}\))
33 - \(\overline{ab}\) = 0 ⇒ \(\overline{ab}\) = 33 ⇒ \(a=b=3\)
Thay \(a=b=3\); \(c\) = 2 vào \(\overline{abc}\) ta được số cần tìm là: 332
Kết luận: 332 là số có 3 chữ số cần tìm thỏa mãn yêu cầu đề bài
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi số ban đầu có dạng : \(\overline{abcd}\)
ta có : \(\overline{abcd}-\overline{ab}=3663\Leftrightarrow99\overline{ab}+\overline{cd}=3663\)'mà :
\(99\overline{ab}\le99\overline{ab}+\overline{cd}\le99\overline{ab}+99\)
Vậy : \(99\overline{ab}\le3663\le99\overline{ab}+99\) hay : \(36\le\text{}\overline{ab}\le37\)
vậy \(\orbr{\begin{cases}ab=36\Rightarrow3699\\ab=37\Rightarrow3700\end{cases}}\)
Vậy ta có hai số thỏa mãn đề bài là 3699 và 3700