tìm GTLN (hay GTNN)
\(C=2x-x^2-4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
a) Ta có: \(A=x^2-2x+5=\left(x^2-2x+1\right)+4\)
\(A=\left[x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right]+4\)
\(A=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}+4=\left(x-\frac{1}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)
=>AMin=17/4
Dấu "=" xảy ra <=> x=1/2
b,\(E=-x^2+2x-3=-\left(x^2-2x+3\right)\)
Đặt \(M=x^2-2x+3\).dễ thấy E=-M
ta có: \(M=\left(x^2-2x+1\right)+2=\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)+2=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}+2\)
\(M=\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Mà E=-M
=>\(E\le\frac{11}{4}\)
=>EMax=11/4
Dấu "=" xảy ra <=>x=1/2
a) ta có A = (2x-1)2+ ( x+2)= 4x2- 4x +1 +x+2= 4x2 -3x +3 = 4x2-2*2x* \(\frac{3}{4}\)+ \(\frac{9}{16}\)+ \(\frac{39}{16}\)
= (2x-\(\frac{3}{4}\))2+ \(\frac{39}{16}\)
=> (2x-\(\frac{3}{4}\))2>=0
=> A >= \(\frac{39}{16}\)
dấu = sảy ra khi x=\(\frac{3}{2}\)
vậy A(min) = \(\frac{39}{16}\) khi x=\(\frac{3}{2}\)
b) lm tương tự B(min)= -\(\frac{25}{4}\) khi x= \(\frac{5}{2}\)
c) đặt dấu trừ ra ngoài vậy C(max)=0 khi x=2
Nếu chỉ có nguyên phân thức mà không có thêm điều kiện gì thì $C$ không có min, max bạn nhé.
Đạt GTNN tại x = \(-\frac{4}{3}\) hoặc x = \(\frac{3}{2}\)
Không có GTLN
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
\(C\)\(=\)\(2x\)\(-\)\(x^2\)\(-\)\(4\)
\(C\)\(=\)\(-x^2\)\(+\)\(2x\)\(-\)\(4\)
\(C\)\(=\)\(-x^2\)\(+\)\(2.x.1\)\(+\)\(1\)\(-\)\(3\)
\(C\)\(=\)\(-\left(x^2-2x+1\right)-3\)\(=\)\(-\left(x-1\right)^2\)\(-\)\(3\)\(< \)hoặc \(=\)\(-3\)
Dấu bằng xảy ra khi : \(x+1=0\)
\(x=-1\)
Vậy GTNN của bt C là -3 khi x bằng -1
\(C=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\)
\(Min_C=-3\)