Chứng minh AB //CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)theo định lí tổng 3 góc trong tam giác:
góc A+góc B+góc C=180 độ
=> góc B =80 độ
theo quan hệ giữa góc và cạnh,ta có:
góc B>gócA(80 độ>70 độ)
=> AC>BC
b)áp dụng định lí tổng 3 góc trong tam giác ta có
góc ADB=70 độ=> tam giác ABD cân tại B =>AB=BD tương tự c/m được CD>BD
=>AB<CD
còn câu c mik chưa lm đc bn nak

Câu đầu thiếu dữ kiện em nhé!
----------
Do hình thang ABCD cân với AB và CD là hai đáy
⇒ ∠B = ∠A = 70⁰
∠D = ∠C = 100⁰
⇒ ∠A + ∠B + ∠C + ∠D = 340⁰
Vậy đề câu này cũng sai!

Từ \(A B = B C\) ⇒ Tam giác \(A B C\) cân tại \(B\)
Từ \(C D = D A\) ⇒ Tam giác \(C D A\) cân tại \(D\)
Gọi \(B D\) cắt \(A C\) tại \(O\)
Cần chứng minh:
- \(O\) là trung điểm của \(A C\)
- \(B D \bot A C\)
- Xét hai tam giác \(A B C\) và \(C D A\):
- Từ \(A B = B C\) ⇒ \(\angle B A C = \angle B C A\)
- Từ \(C D = D A\) ⇒ \(\angle D C A = \angle D A C\)
Nếu 2 tam giác \(A B C\) và \(C D A\) xếp đối xứng nhau qua đường chéo \(B D\), thì các cặp đỉnh tương ứng đối xứng qua \(B D\), nghĩa là:
- \(A\) và \(C\) đối xứng nhau qua \(B D\)
- Do đó, \(B D\) là trung trực của đoạn \(A C\)
- Tổng 4 góc trong tứ giác:
\(\angle A + \angle B + \angle C + \angle D = 360^{\circ} \Rightarrow \angle A + \angle C = 360^{\circ} - \left(\right. 100^{\circ} + 80^{\circ} \left.\right) = 180^{\circ}\)
Mặt khác:
- Tam giác \(A B C\) cân tại \(B\) ⇒ \(\angle A = \angle C\)
- Hoặc tam giác \(C D A\) cân tại \(D\) ⇒ \(\angle A = \angle C\)
⇒ \(\angle A = \angle C\)
⇒ \(\angle A + \angle C = 180^{\circ} \Rightarrow 2 \angle A = 180^{\circ} \Rightarrow \angle A = \angle C = \boxed{90^{\circ}}\)

a) Ta có : AB=BC và CD=DA (đề bài)
⇒ BD là đường trung trực của AC
b) Ta có : AB=BC (đề bài)
⇒ Δ ABC cân tại B
⇒ Góc BAC = Góc BCA
Tương tự ta chứng minh Góc DAC = Góc DCA (CD=AD...)
mà Góc A = Góc BAC + Góc DAC
Góc C = Góc BCA+ Góc DCA
⇒ Góc A = Góc C
mà A + B + C +D =360; B=100o ; D=80o
⇒ A + C =360 - (100 + 80) = 240
⇒ A = C = 240 : 2 = 120o

a: BA=BC
DC=DA
=>BD là trung trực của AC
b: Xét ΔABD và ΔCBD có
BA=BC
BD chung
DA=DC
=>ΔABD=ΔCBD
=>góc BAD=góc BCD=(360-100-80)/2=90 độ

a, A + D = 110 + 70 = 180độ
=> AB // CD ( hai góc trong cùng phía bù nhau)
b, vì AB//CD => B +C = 180 độ
B: C = 7/3 => B /7 = C / 3 = (B+C) /(7+3) = 180 / 10 = 18 độ (Áp dụng dãy tỉ số bằng nhau)
=> B = 18 . 7 = 126độ
nhầm tớ sửa
ta có:
góc BCD= góc ACD+ góc ACB
góc BCD=800+300
góc BCD=1100
ta lại có:
góc ABC+góc BCD= 700+1100=1800
mà góc ABC và góc BCD ở vị trí trong cùng phía nên:
AB//CD