cho hình lập phương ABCD.A'B'C'D' và M,N,E,F lần lượt là trung điểm các cạnh BC, BA, AA' , A'D'. Tính góc giữa các cặp đường thẳng sau
a) A'C' và BC
b) MN và EF
c) MN và BC
d) EF và CC'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối \(SB';SC';SD'\) lần lượt cắt \(A'B';A'C';A'D'\) tại M, N, P
\(\Rightarrow M,N,P\) là trung điểm của A'B', A'C', A'D' theo tính chất đường trung bình
\(\Rightarrow A'MNP\) là hình vuông cạnh \(\frac{a}{2}\)
\(V_{A'MNP.ABCD}=V_{S.ABCD}-V_{S.A'MNP}=\frac{1}{3}\left(SA.AB^2-SA'.AM^2\right)\)
\(=\frac{1}{3}\left(2a.a^2-a.\left(\frac{a}{2}\right)^2\right)=\frac{7a^3}{12}\)
Đề sai bạn, BD' làm sao vuông góc với (A'C'D') hay cũng là (A'B'C'D') được
Gọi giao của SB với \(A'B'\) là M, giao của \(SD\) với \(A'D'\) là N
\(\Rightarrow M,N\) lần lượt là trung điểm A'B' và A'D'
\(\Rightarrow\Delta MA'N\) vuông cân tại A' với \(A'M=A'N=\frac{a}{2}\)
\(V_{A'MN.ABD}=V_{S.ABD}-V_{SA'MN}=\frac{1}{6}\left(SA.AB^2-SA'.A'M^2\right)\)
\(=\frac{1}{6}\left(2a.a^2-a.\left(\frac{a}{2}\right)^2\right)=\frac{7a^3}{24}\)
I là tâm ABCD \(\Rightarrow\) I là trung điểm BD
J là tâm ABB'A' \(\Rightarrow\) J là trung điểm A'B
\(\Rightarrow\) IJ là đường trung bình của tam giác A'BD
\(\Rightarrow\) IJ//A'D
Lời giải:
Gọi độ dài cạnh hình lập phương là $x$
Theo định lý Pitago ta có:
\(B'D'^2=A'B'^2+A'D'^2=x^2+x^2=2x^2\)
Độ dài đường chéo:
\(BD'=\sqrt{BB'^2+B'D'^2}=\sqrt{x^2+2x^2}=\sqrt{3}x=2\sqrt{3}a\)
\(\Rightarrow x=2a\)
Đường cầu nội tiếp hình lập phương là đường cầu có bán kính bằng một nửa độ dài cạnh lập phương
\(\Rightarrow r=\frac{x}{2}=a\)
Do đó diện tích mặt cầu cần tìm là: \(S_{c}=4\pi r^2=4\pi a^2\)
Đáp án C
a: ABCD.A'B'C'D' là hình lập phương
=>AA'//BB'//CC'//DD' và AA'=BB'=CC'=DD'
Xét tứ giác AA'C'C có
AA'//CC'
AA'=CC'
Do đó: AA'C'C là hình bình hành
=>AC//A'C'
ABCD.A'B'C'D' là hình lập phương
=>ABCD và A'B'C'D' là hình vuông
ABCD là hình vuông
=>AC là phân giác của góc BAD và CA là phân giác của góc BCD
=>\(\widehat{BAC}=\widehat{DAC}=45^0\) và \(\widehat{BCA}=\widehat{DCA}=45^0\)
\(\widehat{A'C';BC}=\widehat{AC;BC}=\widehat{ACB}=45^0\)
b: Xét ΔBAC có M,N lần lượt là trung điểm của BC,BA
=>MN là đường trung bình của ΔBAC
=>MN//AC
Xét ΔA'AD' có
E,F lần lượt là trung điểm của AA',A'D'
=>EF là đường trung bình của ΔA'AD'
=>EF//AD'
ABCD.A'B'C'D là hình vuông
=>ADD'A' là hình vuông; DCC'D' là hình vuông
ABCD là hình vuông
=>\(AC=AB\cdot\sqrt{2}\)(1)
ADD'A' là hình vuông
=>\(AD'=AD\cdot\sqrt{2}=AB\cdot\sqrt{2}\)(2)
DCC'D' là hình vuông
=>\(CD'=CD\cdot\sqrt{2}=AB\cdot\sqrt{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AC=AD'=D'C
=>ΔAD'C đều
=>\(\widehat{D'AC}=60^0\)
\(\widehat{MN;EF}=\widehat{AC;AD'}=\widehat{CAD'}=60^0\)
c: \(\widehat{MN;BC}=\widehat{AC;CB}=\widehat{ACB}=45^0\)
d: \(\widehat{EF;CC'}=\widehat{AD';DD'}=\widehat{AD'D}=45^0\)