\(xyz>0;x+y+z=\dfrac{1}{2}\). tìm max \(P=\dfrac{x}{\sqrt{x+2yx}}+\dfrac{y}{\sqrt{y+2zx}}+\dfrac{z}{\sqrt{z+2xy}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Với x ; y > 0 , cần c/m : \(x^3+y^3\ge xy\left(x+y\right)\)
Ta có : \(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-xy\right)=\left(x+y\right)\left(x-y\right)^2\ge0\)
( điều này luôn đúng với mọi x ; y > 0 )
=> BĐT được c/m
Áp dụng vào bài toán , ta có :
\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{xz\left(x+z\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z;x,y,z>0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt z -60 = t
\(x+y+z=100\Rightarrow x+y+t=40;\)
\(\Leftrightarrow x+y+t\ge3\sqrt[3]{xyt}\Leftrightarrow xyt\le\frac{\left(x+y+t\right)^3}{3^3}=\left(\frac{40}{3}\right)^3\)
\(Max\left(xyt\right)=\left(\frac{40}{3}\right)^3\) khi x =y =t =40/3 => z =60+t =60+40/3=220/3
=>\(xyz\le\frac{40}{3}.\frac{40}{3}.\frac{220}{3}=\frac{352000}{27}\) khi x =y =40/3 ; z =220/3
\(P=\dfrac{x}{\sqrt{2.\dfrac{1}{2}x+2yz}}+\dfrac{y}{\sqrt{2.\dfrac{1}{2}y+zx}}+\dfrac{z}{\sqrt{2.\dfrac{1}{2}z+xy}}\)
\(=\dfrac{x}{\sqrt{2x\left(x+y+z\right)+yz}}+\dfrac{y}{\sqrt{2y\left(x+y+z\right)+2zx}}+\dfrac{z}{\sqrt{2z\left(x+y+z\right)+2xy}}\)
\(=\dfrac{x}{\sqrt{2\left(x+y\right)\left(x+z\right)}}+\dfrac{y}{\sqrt{2\left(x+y\right)\left(y+z\right)}}+\dfrac{z}{\sqrt{2\left(x+z\right)\left(y+z\right)}}\)
\(=\dfrac{1}{2\sqrt{2}}.2\sqrt{\dfrac{x}{x+y}}.\sqrt{\dfrac{x}{x+z}}+\dfrac{1}{2\sqrt{2}}.2\sqrt{\dfrac{y}{x+y}}.\sqrt{\dfrac{y}{y+z}}+\dfrac{1}{2\sqrt{2}}.2\sqrt{\dfrac{z}{x+z}}.\sqrt{\dfrac{z}{y+z}}\)
\(\le\dfrac{1}{2\sqrt{2}}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)\)
\(=\dfrac{3}{2\sqrt{2}}\)
Dấu "=" xảy ra tại \(x=y=z=\dfrac{1}{6}\)