Bài 3 so sánh:
a) 2^248 và 3^155
b)202^303 và 303^202
c)222^777 và 777^222
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 1020 và 9010
\(10^{20}=10^{2.10}=\left(10^2\right)^{10}=100^{10}\)
Vì 10010 > 9010 => 1020 > 9010
Hai phần còn lại tương tự
Cho mình hỏi ai ra đề vậy?
Giải:
19^100 = 10^100 + 9^100
= 1000000000000...(bằng 10 và 100 số không ở sau)
10^31 = 10^30 + 10^1
=1000000000...(bằng 10 và 30 số 0 phía sau)
Mình giải tới đó bạn tự suy luận tiép nhé!
a) Ta có:
\(2^{300}=2^{3\cdot100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2\cdot100}=\left(3^2\right)^{100}=9^{100}\)
Mà: \(8< 9\)
\(\Rightarrow8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) Ta có:
\(3^{500}=3^{5\cdot100}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=7^{3\cdot100}=\left(7^3\right)^{100}=343^{100}\)
Mà: \(243< 343\)
\(\Rightarrow243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
c) Ta có:
\(8^5=\left(2^3\right)^5=2^{3\cdot5}=2^{15}=2\cdot2^{15}\)
\(3\cdot4^7=3\cdot\left(2^2\right)^7=3\cdot2^{2\cdot7}=3\cdot2^{14}\)
Mà: \(2< 3\)
\(\Rightarrow2\cdot2^{14}< 3\cdot2^{14}\)
\(\Rightarrow8^5< 3\cdot4^7\)
d) Ta có:
\(202^{303}=202^{3\cdot101}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=303^{2\cdot101}=\left(303^2\right)^{101}=91809^{101}\)
Mà: \(8242408>91809\)
\(\Rightarrow8242408^{101}>91809^{101}\)
\(\Rightarrow202^{303}>303^{202}\)
Ta có:
\(222^{777}=111^{777}\cdot2^{777}\) \(\left(1\right)\)
\(777^{222}=111^{222}.7^{222}\) \(\left(2\right)\)
Ta lại có:
\(2^{777}=\left(2^7\right)^{111}=128^{111}\) \(\left(3\right)\)
\(7^{222}=\left(7^2\right)^{111}=49^{111}\) \(\left(4\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\) và \(\left(4\right)\)
\(\Rightarrow222^{777}>777^{222}\)
222^777 = (2 . 111) ^777 = 2^777 . 111^777
= (2^7)^111 . (111^7)^111
777^222. = (7 . 111)^222 = 7^222 . 111^222
= (7^2)^111 . (111^2)^111
So sánh ta thấy:
2^7 > 7^2
111^7 > 111^2
==> (2^7)^111 . (111^7)^111 > (7^2)^111 . (111^2)^111
==> 222^777 > 777^222
Ta có : 222^777=(2.111)^7.111=128^111.(111^7)^111
777^222=(7.111)^2.111=49^111.(111^2)^111
Vì 128^111>49^111
(111^7)^111>(111^2)^111
=>222^777>777^222
\(a,\)Ta có :
\(9^5=\left(3^2\right)^5=3^{10}\)
\(27^3=\left(3^3\right)^3=3^{27}\)
Vì \(3^{10}>3^9\Rightarrow9^5>27^3\)
Ta có : 3500 = (35)100 = 243100
7300 = (73)100 = 343100
Vì 243 < 343
Nên : 243100 < 343100
Hay : 3500 < 7300