Xác định đường thẳng đi qua hai điểm A, B trong trường hợp sau: A(-2;0), B(0;-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đồ thị hàm số đi qua gốc tọa độ có dạng y = ax.
Đồ thị hàm số đi qua điểm A(3; 2) nên tọa độ A nghiệm đúng phương trình hàm số.
Ta có: 2 = a.3 ⇔ a = 2/3
Vậy hàm số đã cho là y = 2/3.x.

a) Theo giả thiết, hai điểm \(A(1;1)\) và \(B( - 1;0)\) thuộc parabol \(\left( P \right):y = a{x^2} + bx + 3\) nên ta có: \(\left\{ {\begin{array}{*{20}{c}}{a + b + 3 = 1}\\{a - b + 3 = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 5}}{2}}\\{b = \frac{1}{2}}\end{array}} \right.} \right.\)
Vậy hàm số cần tìm là: \(y = - \frac{5}{2}{x^2} + \frac{1}{2}x + 3.\)
b) Parabol nhận \(x = 1\) làm trục đối xứng nên \( - \frac{b}{{2a}} = 1\,\, \Leftrightarrow \,\,b = - 2a.\)
Điểm \(M(1;2)\) thuộc parabol nên \(a + b + 3 = 2\,\, \Leftrightarrow \,\,a + b = - 1.\)
Do đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{b = - 2a}\\{a + b = - 1}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = - 2}\end{array}} \right.} \right.\)
Vậy hàm số cần tìm là: \(y = {x^2} - 2x + 3\)
c) Parabol có đỉnh \(I(1;4)\) nên ta có:
\(\left\{ {\begin{array}{*{20}{c}}{ - \frac{b}{{2a}} = 1}\\{a + b + 3 = 4}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{b = - 2a}\\{a + b = 1}\end{array}\,\, \Leftrightarrow \,\,} \right.} \right.\left\{ {\begin{array}{*{20}{c}}{a = - 1}\\{b = 2}\end{array}} \right.\)
Vậy hàm số cần tìm là: \(y = - {x^2} + 2x + 3.\)

a. Vì hệ số góc của đt là \(\dfrac{1}{2}\) \(\Rightarrow\) a = \(\dfrac{1}{2}\)
Vì đt y = ax + b đi qua điểm A (2 ; -3) nên ta có :
x = 2 ; y = -3
Thay a = \(\dfrac{1}{2}\), x = 2, y = -3 vào hs y = ax + b ta được :
\(\dfrac{1}{2}.2+b=-3\)
\(\Leftrightarrow\) 1 + b = -3
\(\Leftrightarrow\) b = -4
Vậy a = \(\dfrac{1}{2}\) và b = -4
Lời giải:
Gọi đường thẳng cần tìm là $(d): y=ax+b$.
Vì $A\in (d)\Rightarrow y_A=ax_A+b$
$\Rightarrow 0=-2a+b(1)$
Vì $B\in (d)\Rightarrow y_B=ax_B+b$
$\Rightarrow -1=0.a+b(2)$
Từ $(1); (2)\Rightarrow b=-1; a=\frac{-1}{2}$
Vậy ptđt cần tìm là $y=\frac{-1}{2}x-1$