K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

\(Q=\frac{x-81+97}{\sqrt{x}+9}=\frac{\left(\sqrt{x}+9\right)\left(\sqrt{x}-9\right)+97}{\sqrt{x}+9}=\sqrt{x}-9+\frac{97}{\sqrt{x}+9}\)

\(=\sqrt{x}+9+\frac{97}{x+9}-18\)

Áp dụng bất đẳng thức AM - GM ta có :

\(Q\ge2\sqrt{\left(\sqrt{x}+9\right).\frac{97}{\sqrt{x}+9}}-18=2.\sqrt{97}-18\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}+9=\frac{97}{\sqrt{x}+9}\Rightarrow x=178-18\sqrt{97}\)

Vậy \(Q_{min}=2\sqrt{97}-18\) tại \(x=178-18\sqrt{97}\)

10 tháng 3 2020

Em dùng AM-GM nhá,em ko dùng cosi đâu ha :)

\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)

\(=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\left(\frac{x}{\sqrt{y}}+\sqrt{y}\right)+\left(\frac{y}{\sqrt{x}}+\sqrt{x}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

\(\ge2\sqrt{x}+2\sqrt{y}-\left(\sqrt{x}+\sqrt{y}\right)=\sqrt{x}+\sqrt{y}\)

Lại có:

\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)

\(=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)

Khi đó:\(2S\ge\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{2}{\sqrt[4]{xy}}\ge\frac{2}{\sqrt{\frac{x+y}{2}}}=2\sqrt{2}\Rightarrow S\ge\sqrt{2}\)

Dấu "=" xảy ra tại x=y=1/2

3 tháng 9 2020

:V

Câu đầu cho x > 0 thì dễ hơn ...... 

Sử dụng BĐT AM - GM ta dễ có:\(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\ge2\sqrt{\left(\sqrt{x}+2\right)\cdot\frac{9}{\sqrt{x}+2}}-2=4\)

Đẳng thức xảy ra tại x=1

\(E=\frac{x+1}{\sqrt{x}}\ge\frac{2\sqrt{x}}{\sqrt{x}}=2\) Đẳng thức xảy ra tại x=1

Làm 2 cái thôi còn lại tương tự bạn nhé :) 

3 tháng 9 2020

+ Ta có: \(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}\)

       \(D=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\)

   Áp dụng bất đẳng thức Cô-si cho phương trình \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\) ta có: 

         \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge\sqrt{\left(\sqrt{x}+2\right).\left(\frac{9}{\sqrt{x}+2}\right)}=\sqrt{9}=3\)

         \(\Rightarrow\)\(D\ge3-2=1\)

   Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x+2}=\frac{9}{\sqrt{x}+2}\)

                                               \(\Leftrightarrow\left(\sqrt{x}+2\right)^2=9\)

                                               \(\Leftrightarrow\sqrt{x}+2=\pm3\)

                                               \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+2=-3\\\sqrt{x}+2=3\end{cases}}\)

                                               \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-5\left(L\right)\\\sqrt{x}=1\end{cases}}\)

                                               \(\Leftrightarrow x=\pm1\)

 Vậy \(S=\left\{\pm1\right\}\)

17 tháng 2 2019

ko biết mới học lớp 6 hihi

17 tháng 2 2019

Tớ lp 6 nek -__-

Ta có: (x+y-3)^4>=0

(x-2y)^2>=0

=> Q >= 2012=>Qmin=2012

Vậy: Qmin=2012. Dấu "=" xảy ra khi: x=2;y=1

12 tháng 7 2017

ĐK  \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)

\(\Rightarrow0\le x< \frac{9}{4}\)

c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)

Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)

Vậy \(MinR=-3\Leftrightarrow x=0\)

13 tháng 6 2021

đặt \(x-1=t\)ta có :

\(A=t+\frac{1}{t}+2=\frac{t^2}{t}+\frac{1}{t}-\frac{2t}{t}+4=\frac{\left(t-1\right)^2}{t}+4\ge4\)

Dấu "=" xảy ra <=> t = 1 <=> x = 2

6 tháng 10 2020

đk: \(x>0;x\ne9\)

a) \(P=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

b) Với x=0,25 ta có: \(P=\frac{\left(\sqrt{0,25}-1\right)^2}{\sqrt{0,25}}=0,5\)

c) \(P=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\sqrt{x}+\frac{1}{\sqrt{x}}-2\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}-2=2-2=0\)

Dấu '=' xảy ra khi x=1 (tmdk). Vậy Min p =0 khi và chỉ khi x=1

26 tháng 8 2017

\(\frac{x^2}{x-1}=\frac{x^2-1+1}{x-1}=\frac{\left(x-1\right)\left(x+1\right)+1}{x-1}=x+1+\frac{1}{x-1}=x-1+\frac{1}{x-1}+2\)

Do \(x>1\) nên \(x-1>0;\frac{1}{x-1}>0\) Áp dụng bất đẳng thức Cauchy ta có :

\(x-1+\frac{1}{x-1}\ge2\sqrt{\left(x-1\right).\frac{1}{x-1}}=2\)

\(\Rightarrow x-1+\frac{1}{x-1}+2\ge4\) hay \(\frac{x^2}{x-1}\ge4\) có GTNN là 4

Dấu "=" xảy ra \(\Leftrightarrow x=2\)

26 tháng 8 2017

Ta có \(\frac{x^2}{x-1}=\frac{x^2-1}{x-1}+\frac{1}{x-1}=x+1+\frac{1}{x-1}\)+2. Áp dụng cosi cho 2 số x+1 và 1/x-1 ta có x+1+1/x-1\(\ge\)2\(\sqrt{\left(x-1\right)\frac{1}{x-1}}=1\), suy ra biểu thức \(\ge\)3, vậy giá trị nn =3 khi x-1=1/x-1, đến đó bn giải tìm x nha