Tìm số x,y \(\in Z\) biết xy - x + 2y = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


x(y-1)+2(y-1)=1
(x+2)(y-1)=1=1*1=(-1)*(-1)
thay vaod rồi tính ra đc

Ta có: \(xy+x-2y+3=x\left(y+1\right)-2y-2+5\)
\(=x\left(y+1\right)-2\left(y+1\right)+5\)
\(=\left(y+1\right)\left(x-2\right)+5\)
(y+1)(x+2)+5=0
nên (y+1)(x-2)=(-5)= (-1) * 5 =5 * (-1)= 1 * (-5) = (-1)*5
+ Nếu y+1 = -1 ; x-2= 5 -> y= -2 ; x =7
+ Nếu y+1 = 5 ; x-2=-1 -> y=4 ; x = 1
+ Nếu y+1 = 1 ; x-2=-5 -> y=0 ; x=-3
+ Nếu y+1= -5 ; x-2=1 -> y=-6 ; x=3

đặt \(\dfrac{x+2y}{3}=\dfrac{y+2z}{4}=\dfrac{z+2x}{5}=t\)
vậy ta đc \(\left\{{}\begin{matrix}x+2y=3t\left(1\right)\\y+2z=4t\left(2\right)\\z+2x=5t\left(3\right)\end{matrix}\right.\)
từ (1) ta có: x = 3t - 2y
thay vào (3) ta được: z + 2 × (3t - 2y) = 5t
=> z + 6t - 4y = 5t => z = -t + 4y (3')
từ (2) ta có: \(z=\dfrac{4t-y}{2}\left(2'\right)\)
từ (2') và (3') ta có:
\(-t+4y=\dfrac{4t-y}{2}\\ -2t+8y=4t-y\\ 9y=6t=>y=\dfrac{2}{3}t\)
thay vào (1): \(x=3t-2\cdot\dfrac{2}{3}t=3t-\dfrac{4}{3}t=\dfrac{5}{3}t\)
thay vào (2'): \(z=\dfrac{4t-\dfrac{2}{3}t}{2}=\dfrac{\dfrac{10}{3}t}{2}=\dfrac{5}{3}t\)
vậy: \(x=\dfrac{5}{3}t;y=\dfrac{2}{3}t;z=\dfrac{5}{3}t\)
thay các giá trị này vào biểu thức trên ta được:
\(xy+yz+2zx=\dfrac{5}{3}t\cdot\dfrac{2}{3}t+\dfrac{2}{3}t\cdot\dfrac{5}{3}t+\dfrac{5}{3}t\cdot\dfrac{5}{3}t\\ xy+yz+2zx=\dfrac{10}{9}t^2+\dfrac{10}{9}t^2+\dfrac{50}{9}t^2\\ =>\dfrac{70}{9}t^2=280=>t=6\\ \left\{{}\begin{matrix}x=\dfrac{5}{3}t=\dfrac{5}{3}\cdot6=10\\y=\dfrac{2}{3}t=\dfrac{2}{3}\cdot6=4\\y=\dfrac{5}{3}t=\dfrac{5}{3}\cdot6=10\end{matrix}\right.\)
vậy các số x; y; z cần tìm lần lượt là 10; 4; 10

b) (x-3).(2y+1)=7
(x-3).(2y+1)= 1.7 = (-1).(-7)
Cứ cho x - 3 = 1 => x= 4
2y + 1 = 7 => y = 3
Tiếp x - 3 = 7 => x = 10
2y + 1 = 1 => y = 0
x-3 = -1 ...=> x = 2


a) \(xy+x+2y=5\\ \Rightarrow y\left(x+2\right)+x+2=5+2\\ \Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Ta xét bảng:
x+2 | 1 | 7 | -1 | -7 |
x | -1 | 5 | -3 | -9 |
y+1 | 7 | 1 | -7 | -1 |
y | 6 | 0 | -8 | -2 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;6\right);\left(5;0\right);\left(-3;-8\right);\left(-9;-2\right)\right\}\)
b) \(xy-3x-y=0\\ \Rightarrow x\left(y-3\right)-y+3=3\\ \Rightarrow\left(y-3\right)\left(x-1\right)=3\)
Ta xét bảng:
x-1 | 1 | 3 | -1 | -3 |
x | 2 | 4 | 0 | -2 |
y-3 | 3 | 1 | -3 | -1 |
y | 6 | 4 | 0 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(2;6\right);\left(4;4\right);\left(0;0\right);\left(-2;2\right)\right\}\)
c) \(xy+2x+2y=-16\\ \Rightarrow x\left(y+2\right)+2y+4=-12\\ \Rightarrow\left(y+2\right)\left(x+2\right)=-12\)
Ta xét bảng:
x+2 | 1 | 2 | 3 | 4 | 6 | 12 | -1 | -2 | -3 | -4 | -6 | -12 |
x | -1 | 0 | 1 | 2 | 4 | 10 | -3 | -4 | -5 | -6 | -8 | -14 |
y+2 | -12 | -6 | -4 | -3 | -2 | -1 | 12 | 6 | 4 | 3 | 2 | 1 |
y | -14 | -8 | -6 | -5 | -4 | -3 | 10 | 4 | 2 | 1 | 0 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;-14\right);\left(0;-8\right);\left(1;-6\right);\left(2;-5\right);\left(4;-4\right);\left(10;-3\right);\left(-3;10\right);\left(-4;4\right);\left(-5;2\right);\left(-6;1\right);\left(-8;0\right);\left(-14;-1\right)\right\}\)


\(X=-3;Y=0\)