Hôm nay (9/9), cơ hội cuối nhận ưu đãi gói VIP x1,5 giá trị, đăng ký ngay!!!
Chỉ còn 1 ngày nhận ưu đãi gói SVIP cho nhà trường! Đăng ký ngay
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(^{x^4+\sqrt{x^2+2002}=2002}\)
\(^{x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}}\)giải pt
\(x^4+\sqrt{x^2+2002}=2002\)
Đặt \(\sqrt{x^2+2002}=a^2>0\)
\(\Rightarrow\hept{\begin{cases}x^4+a^2=2002\left(1\right)\\a^4-x^2=2002\left(2\right)\end{cases}}\)
Lấy (1) - (2) ta được
\(x^4-a^4+x^2+a^2=0\)
\(\Leftrightarrow\left(x^2+a^2\right)\left(x^2-a^2+1\right)=0\)
\(\Leftrightarrow x^2+1=a^2=\sqrt{x^2+2002}\)
\(\Leftrightarrow x^4+2x^2+1=x^2+2002\)
\(\Leftrightarrow x^4+x^2-2001=0\)
Tới đây thì đơn giản rồi
\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
\(\Leftrightarrow\left(x^2+3x+1\right)^2=\left(x+3\right)^2\left(x^2+1\right)\)
\(\Leftrightarrow x^2=8\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{8}\\x=-\sqrt{8}\end{cases}}\)
Giải PT: \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right).\left(x^2-3x+5\right)}=4-2x\)
giải pt: \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
Giải pt, bất pt
a) \(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}=2x\right)\)
b) \(\left(x^2-3x+2\right)\left(x^2-12x+32\right)\le4x^2\)
c) \(2\sqrt{3x+7}-5\sqrt[3]{x-6}=4\)
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
giải pt
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)}\)=3x-1
Giải pt:
\(\left(3x^2+4x-4\right)\sqrt{x-1}=x\left(x^2-3x+3\right)\)
PS: Nãy quên xóa số 4
\(\left(22x-3x^2-4\right)\sqrt{x-1}=x\left(3x-x^2-3\right)\)
Giải PT: \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
\(x^4+\sqrt{x^2+2002}=2002\)
Đặt \(\sqrt{x^2+2002}=a^2>0\)
\(\Rightarrow\hept{\begin{cases}x^4+a^2=2002\left(1\right)\\a^4-x^2=2002\left(2\right)\end{cases}}\)
Lấy (1) - (2) ta được
\(x^4-a^4+x^2+a^2=0\)
\(\Leftrightarrow\left(x^2+a^2\right)\left(x^2-a^2+1\right)=0\)
\(\Leftrightarrow x^2+1=a^2=\sqrt{x^2+2002}\)
\(\Leftrightarrow x^4+2x^2+1=x^2+2002\)
\(\Leftrightarrow x^4+x^2-2001=0\)
Tới đây thì đơn giản rồi
\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
\(\Leftrightarrow\left(x^2+3x+1\right)^2=\left(x+3\right)^2\left(x^2+1\right)\)
\(\Leftrightarrow x^2=8\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{8}\\x=-\sqrt{8}\end{cases}}\)