So sánh căn bậc 2 của 2023+2025 và 2 lần căn bậc hai của 2024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1
Tức là :
\(\sqrt{244}\)và \(\sqrt{4}\)
tất nhiên ........
B = căn bậc hai của 196 - 1/căn bậc hai của 6
Tất nhiên ......
2) Tìm GTNN của A = 2 + căn bậc hai của x
\(A=2+\sqrt{x}\)
= \(\sqrt{x+2}\)
3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1
\(B=5-2.\sqrt{x-1}\)
= \(4-2\sqrt{x}\)

Do \(x^2\ge0;\forall x\)
\(\Rightarrow\sqrt{x^2+9}-2025\ge\sqrt{0+9}-2025=-2022\)
C là đáp án đúng

\(\sqrt{17} + \sqrt{26} + 1 \approx 10.222\) và \(\sqrt{99} \approx 9.949\), nên ta có:
\(\sqrt{17} + \sqrt{26} + 1 > \sqrt{99}\)
ta có: \(\sqrt{17}>\sqrt{16}=4,\sqrt{26}>\sqrt{25}=5\)
và \(\sqrt{99}<\sqrt{100}=10\)
nên :\(\sqrt{17}+\sqrt{26}+1>4+5+1=10>\sqrt{99}\)
Vậy : \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
\(\sqrt{2023+2025}=\sqrt{2.2024}\)
\(2\sqrt{2024}=\sqrt{4.2024}\)
\(\sqrt{2.2024}< \sqrt{4.2024}\)
=> \(\sqrt{2023+2025}< 2.\sqrt{2024}\)
\(\sqrt{2023+2025}=\sqrt{2.2024}\\ 2\sqrt{2024}=\sqrt{4.2024}\\ \sqrt{2.2024}< \sqrt{4.2024}\\ \Rightarrow\sqrt{2023+2025< 2.\sqrt{2024}}\)