Tìm x biết
a. \ sqrt 4x = \ sqrt 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)
a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)
PT <=> 2x - 1 = 5
<=> x = 3 ( TM )
Vậy ...
b, ĐKXĐ : \(x\ge5\)
PT <=> x - 5 = 9
<=> x = 14 ( TM )
Vậy ...
c, PT <=> \(\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy ...
d, PT<=> \(\left|x-3\right|=3-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)
Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)
e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)
PT <=> 2x + 5 = 1 - x
<=> 3x = -4
<=> \(x=-\dfrac{4}{3}\left(TM\right)\)
Vậy ...
f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)
PT <=> \(x^2-x=3-x\)
\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )
Vậy ...
a) \(\sqrt{2x-1}=\sqrt{5}\) (x \(\ge\dfrac{1}{2}\))
<=> 2x - 1 = 5
<=> x = 3 (tmđk)
Vậy S = \(\left\{3\right\}\)
b) \(\sqrt{x-5}=3\) (x\(\ge5\))
<=> x - 5 = 9
<=> x = 4 (ko tmđk)
Vậy x \(\in\varnothing\)
c) \(\sqrt{4x^2+4x+1}=6\) (x \(\in R\))
<=> \(\sqrt{\left(2x+1\right)^2}=6\)
<=> |2x + 1| = 6
<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)
Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)
`sqrt{4x+20}-3sqrt{5+x}+4/3sqrt{9x+15}=6(x>=-5)`
`<=>sqrt{4(x+5)}-3sqrt{x+5}+4/3sqrt{9(x+5)}=6`
`<=>2sqrt{x+5}-3sqrt{x+5}+4sqrt{x+5}=6`
`<=>3sqrt{x+5}=6`
`<=>sqrt{x+5}=2`
`<=>x+5=4`
`<=>x=-1(tm)`
Vậy `x=-1`
a) \(\sqrt{4-5x}=12\)
ĐK : x ≤ 4/5
Bình phương hai vế
⇔ \(4-5x=144\)
⇔ \(-5x=140\)
⇔ \(x=-28\)( tm )
b) \(\sqrt{1-4x+4x^2}=5\)
⇔ \(\sqrt{\left(1-2x\right)^2}=5\)
⇔ \(\left|1-2x\right|=5\)
⇔ \(\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
c) \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{3}{4}\sqrt{9x+45}=6\)
ĐK : x ≥ -5
⇔ \(\sqrt{2^2\left(x+5\right)}-3\sqrt{x+5}+\frac{3}{4}\sqrt{3^2\left(x+5\right)}=6\)
⇔ \(\left|2\right|\sqrt{x+5}-3\sqrt{x+5}+\frac{3}{4}\cdot\left|3\right|\sqrt{x+5}=6\)
⇔ \(2\sqrt{x+5}-3\sqrt{x+5}+\frac{9}{4}\sqrt{x+5}=6\)
⇔ \(\frac{5}{4}\sqrt{x+5}=6\)
⇔ \(\sqrt{x+5}=\frac{24}{5}\)
⇔ \(x+5=\frac{576}{25}\)
⇔ \(x=\frac{451}{25}\)( tm )
d)\(\sqrt{x-2}\le3\)
ĐK : x ≥ 2
⇔ \(x-2\le9\)
⇔ \(x\le11\)
Kết hợp với điều kiện => Nghiệm của bpt là 2 ≤ x ≤ 11
a: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2-4x+4}=7\)
=>\(\sqrt{\left(x-2\right)^2}=7\)
=>|x-2|=7
=>\(\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)
b: ĐKXĐ: x>=-3
\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\cdot\sqrt{9x+27}=6\)
=>\(2\sqrt{x+3}-3\sqrt{x+3}+\dfrac{4}{3}\cdot3\sqrt{x+3}=6\)
=>\(3\sqrt{x+3}=6\)
=>\(\sqrt{x+3}=2\)
=>x+3=4
=>x=1(nhận)
\(\sqrt{4\left(1-x\right)^2}-6=0\)
<=> \(\left|2\left(1-x\right)\right|=6\)
TH1: x \(\ge\)1 Khi đó pt trở thành:
\(2\left(x-1\right)=6\)
<=> x - 1 = 3
<=> x = 4 (tm)
TH2: x < 1, khi đó pt trở thành:
2(1 - x) = 6
<=> 1 - x = 3
<=> x = -2(tm)
vậy S= {4; -2}
Trả lời:
\(\sqrt{4\left(1-x\right)^2}-6=0\)
\(\Leftrightarrow2.\left|1-x\right|=6\)
\(\Leftrightarrow\left|1-x\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}1-x=3\\1-x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=4\end{cases}}\)
Vậy \(x=\left\{-2,4\right\}\)
\(\sqrt{4x^2+4x+1}=x+2\)\(\left(x\ge-2\right)\)
\(\Leftrightarrow4x^2+4x+1=\left(x+2\right)^2\)
\(\Leftrightarrow4x^2+4x+1=x^2+4x+4\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\x=-1\left(TM\right)\end{cases}}\)
Vậy \(x=\left\{1,-1\right\}\)
\(\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{20-12\sqrt{5}+9}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-2\sqrt{5}+3}}\)
a,\(A=2\sqrt{x^2+x+\dfrac{1}{2}}=2\sqrt{x^2+x+\dfrac{1}{4}+\dfrac{1}{4}}=2\sqrt{\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}}\)
\(=\sqrt{4\left(x+\dfrac{1}{2}\right)^2+1}\ge1\) dấu"=" xảy ra<=>x=-1/2
\(B=\sqrt{2\left(x^2-2x+\dfrac{5}{2}\right)}=\sqrt{2\left[x^2-2x+1+\dfrac{3}{2}\right]}\)
\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\) dấu"=" xảy ra<=>x=1
\(C=\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\ge\dfrac{-2}{-\sqrt{2}}=\sqrt{2}\) dấu"=" xảy ra<=>x=1
\(D=x-2\sqrt{x+2}\ge-2\) dấu"=" xảy ra<=>x=-2
1.
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x+2|+|x+3|=|x+2|+|-x-3|\geq |x+2-x-3|=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $(x+2)(-x-3)\geq 0$
$\Leftrightarrow (x+2)(x+3)\leq 0$
$\Leftrightarrow -3\leq x\leq -2$
2. ĐKXĐ: $x\geq 1$
\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}\)
\(=\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|\)
\(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|\geq |\sqrt{x-1}+1+1-\sqrt{x-1}|=2\)
Vậy gtnn của $B$ là $2$. Giá trị này đạt tại $(\sqrt{x-1}+1)(1-\sqrt{x-1})\geq 0$
$\Leftrightarrow 1-\sqrt{x-1}\geq 0$
$\Leftrightarrow 0\leq x\leq 2$
a) \(\sqrt{x}>4\) có nghĩa là \(\sqrt{x}>\sqrt{16}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{x}>\sqrt{16}\Leftrightarrow x>16\)
Vậy \(x>16\)
b) \(\sqrt{4x}\le4\) có nghĩa là \(\sqrt{4x}\le\sqrt{16}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{4x}\le\sqrt{16}\Leftrightarrow4x\le16\Leftrightarrow x\le4\)
Vậy \(x\le4\)
c) \(\sqrt{4-x}\ge6\) có nghĩa là \(\sqrt{4-x}\ge\sqrt{36}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{4-x}\ge\sqrt{36}\Leftrightarrow4-x\ge36\Leftrightarrow x\le-32\)
Vậy \(x\le-32\)
\(\sqrt{4x}=\sqrt{5}\)
\(\Leftrightarrow4x=5\)
\(\Leftrightarrow x=\frac{5}{4}\)