Tìm số tự nhiên x biết rằng: x+15 và x-74 là 2 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


đúng nhưng bài làm . tick cho tớ nhé tớ là bai chứng minh của cậu rồi


1.
a, Các số tự nhiên có tận cùng là 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
=> Các số chính phương sẽ có tận cùng là: 0, 1, 4, 9, 6, 5
=> Các số chính phương k thể có tận cùng là 2, 3, 7, 9
b,
3. 5. 7. 9. 11+ 3= (...5)+ (...3)
= (....8)
3.5.7.9.11+3 có tận cùng là 8 mà số chính phương luôn có tận cùng là 0, 1, 4, 9, 6, 5 => 3.5.7.9.11+3 k pải là số chính phương
2.3.4.5.6 -3= (....0)- (....3)
= (....7)
2.3.4.5.6 -3 có tận cùng là 7 mà số chính phương luôn có tận cùng là 0, 1, 4, 9, 6, 5 => 2.3 .4 .5 .6 -3 k pải là số chính phương.
2.
a, 2n= 16 b, 4n= 64 c, 15n= 225
Mà 16= 24 Mà 64= 43 Mà 225= 152
=> 2n= 24 => 4n= 43 => 15n= 152
=> n=4 => n= 3 => n=2
3,
x50= x
=> x=1

a) Đặt: \(x+13=a^2,x-2=b^2\)
\(\Rightarrow a^2-b^2=15\Leftrightarrow\left(a-b\right)\left(a+b\right)=15\Rightarrow\orbr{\begin{cases}a-b=1,a+b=15\\a-b=3,a+b=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=8,b=7\Rightarrow x=51\\a=4,b=1\Rightarrow x=3\end{cases}}\)
b) Đặt \(x^2+6x+16=n^2\Leftrightarrow n^2-\left(x+3\right)^2=7\Leftrightarrow\left(n-x-3\right)\left(n+x+3\right)=7\)
\(\Leftrightarrow\hept{\begin{cases}n-x-3=1\\n+x+3=7\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\n=4\end{cases}\Rightarrow x=0}\)
c) \(x^2+3x+9\)là số chính phương \(\Leftrightarrow4\left(x^2+3x+9\right)\)là số chính phương
Đặt \(4\left(x^2+3x+9\right)=m^2\Leftrightarrow m^2-\left(2x+3\right)=27\Leftrightarrow\left(m-2x-3\right)\left(m+2x+3\right)=27\)
\(\Rightarrow\orbr{\begin{cases}m-2x-3=1,m+2x+3=27\\m-2x-3=3,m+2x+3=9\end{cases}\Leftrightarrow\orbr{\begin{cases}m=14,x=5\\m=6,x=0\end{cases}}}\)
d) Đặt \(x+26=k^3,x-11=l^3\)
\(\Rightarrow k^3-l^3=37\Leftrightarrow\left(k-l\right)\left(k^2+l^2+kl\right)=37\Rightarrow\orbr{\begin{cases}k-l=1\\k^2+l^2+kl=37\end{cases}}\)
\(\Rightarrow k=4,l=3\Rightarrow x=38\)

Điều kiện: \(x\ge74\)
\(GT\Rightarrow\left\{{}\begin{matrix}x+15=m^2\left(m\in N\right)\\x-74=n^2\left(n\in N\right)\end{matrix}\right.\)
\(\Rightarrow m^2-15=n^2+74\)
\(\Leftrightarrow m^2-n^2=89\Leftrightarrow\left(m+n\right)\left(m-n\right)=89\)
Do \(m,n\in N\) và \(89=1\cdot89\) nên ta có:
Trường hợp 1: \(\left\{{}\begin{matrix}m+n=1\\m-n=89\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=45\\n=-44\end{matrix}\right.\) (loại).
Trường hợp 2: \(\left\{{}\begin{matrix}m+n=89\\m-n=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=45\\n=44\end{matrix}\right.\) (nhận).
\(\Rightarrow x=m^2-15=45^2-15=2010\left(TM\right)\)
Vậy: \(x=2010\).