Giair phương trinhf\(\frac{x^2}{2}+\frac{18}{x^2}=13\left(\frac{x}{2}-\frac{3}{x}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(x+\frac{1}{x}=t\Rightarrow\left(x+\frac{1}{x}\right)^2=t^2\Leftrightarrow x^2+\frac{1}{x^2}=t^2-2\)
Khi đó phương trình đã cho
\(\Leftrightarrow2t^2+\left(t^2-2\right)^2-t^2\left(t^2-2\right)=4-4x+x^2\)
\(\Leftrightarrow2t^2+t^4-4t^2+4-t^4+2t^2=x^2-4x+4\)
\(\Leftrightarrow4=x^2-4x+4\)
\(\Leftrightarrow x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Mà ĐKXĐ của phương trình là \(x\ne0\)
Tập nghiệm của pt là \(S=\left\{4\right\}\)
Đặt \(x+\frac{1}{x}=a\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2=a^2\Leftrightarrow x^2+\frac{1}{x^2}+2=a^2\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)
Có \(2a^2+\left(a^2-2\right)^2-a^2\left(a^2-2\right)=\left(2-x\right)^2\)
\(2a^2+a^4-4a^2+4-a^4+2a^2=\left(2-x\right)^2\)
\(\Leftrightarrow4=\left(2-x\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2-x=4\\2-x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=6\end{cases}}\)
Vậy \(S=\left(-2;6\right)\)

a/ Do \(x=0\) không phải nghiệm, pt tương đương:
\(\frac{3}{x+\frac{3}{x}-1}-\frac{2}{x+\frac{3}{x}-3}=-1\)
Đặt \(x+\frac{3}{x}-3=a\) ta được:
\(\frac{3}{a+2}-\frac{2}{a}=-1\)
\(\Leftrightarrow3a-2\left(a+2\right)=-a\left(a+2\right)\)
\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{3}{x}-3=1\\x+\frac{3}{x}-3=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-4x+3=0\\x^2+x+3=0\end{matrix}\right.\)
b/ Đặt \(x^2+2x+\frac{5}{2}=a>0\)
Phương trình trở thành:
\(\frac{1}{\left(a-\frac{1}{2}\right)^2}+\frac{1}{\left(a+\frac{1}{2}\right)^2}=\frac{5}{4}\)
\(\Leftrightarrow4\left(a+\frac{1}{2}\right)^2+4\left(a-\frac{1}{2}\right)^2=5\left(a^2-\frac{1}{4}\right)^2\)
\(\Leftrightarrow8a^2+2=5\left(a^4-\frac{1}{2}a^2+\frac{1}{16}\right)\)
\(\Leftrightarrow5a^4-\frac{21}{2}a^2-\frac{27}{16}=0\Rightarrow\left[{}\begin{matrix}a^2=\frac{9}{4}\\a^2=-\frac{3}{20}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+2x+\frac{5}{2}=\frac{3}{2}\\x^2+2x+\frac{5}{2}=-\frac{3}{2}\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne\pm1\)
\(\Leftrightarrow\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2+\frac{2x^2}{x^2-1}-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)
\(\Leftrightarrow\left(\frac{x}{x+1}+\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)
\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)
Đặt \(\frac{2x^2}{x^2-1}=a\)
\(\Rightarrow a^2-a-\frac{10}{9}=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{5}{3}\\a=-\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2x^2}{x^2-1}=\frac{5}{3}\\\frac{2x^2}{x^2-1}=-\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=-5\left(l\right)\\x^2=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow x=\pm\frac{1}{2}\)
d/ĐKXĐ: ...
\(\Leftrightarrow\left(x^2+\frac{36}{x^2}\right)-13\left(x-\frac{6}{x}\right)=0\)
Đặt \(x-\frac{6}{x}=a\Rightarrow x+\frac{36}{x^2}=a^2+12\)
\(\Rightarrow a^2-13a+12=0\Rightarrow\left[{}\begin{matrix}a=1\\a=12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{6}{x}=1\\x-\frac{6}{x}=12\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-6=0\\x^2-12x-6=0\end{matrix}\right.\)

\(\left(x^2+\frac{4}{x^2}+1\right)^2=\left(x^2-\frac{4}{x^2}-1\right)^2\)
=> \(x^2+\frac{4}{x^2}+1=x^2-\frac{4}{x^2}-1\)
=> \(\left(x^2-x^2\right)+\left(\frac{4}{x^2}+\frac{4}{x^2}\right)=-1-1\)
=> \(\frac{8}{x^2}=-2\)
=> \(8=-2x^2\)
\(=>x^2=-4\)
=> x = rỗng
=> \(x^2=-4\)

Ta có:
\(\left(\right. \frac{13 \frac{2}{9} - 15 \frac{2}{3}}{18 \frac{3}{7} - 17 \frac{1}{4}} \cdot \frac{30^{2} - 5^{4}}{25 - 12 \cdot 5^{2}} \left.\right) \cdot x = \frac{\frac{2}{11} + \frac{3}{13} + \frac{4}{15} + \frac{5}{17}}{4 \frac{1}{11} + \frac{5}{13} + \frac{9}{15} + \frac{13}{17}}\)
Bước 1: Đổi hỗn số về phân số
- \(13 \frac{2}{9} = \frac{119}{9}\),
- \(15 \frac{2}{3} = \frac{47}{3}\),
- \(18 \frac{3}{7} = \frac{129}{7}\),
- \(17 \frac{1}{4} = \frac{69}{4}\)
Bước 2: Tính toán từng phần
Ta có:
\(\frac{119}{9} - \frac{47}{3} = \frac{119 - 141}{9} = \frac{- 22}{9}\) \(\frac{129}{7} - \frac{69}{4} = \frac{516 - 483}{28} = \frac{33}{28}\) \(30^{2} - 5^{4} = 900 - 625 = 275\) \(25 - 12 \cdot 25 = 25 - 300 = - 275\)
Khi đó:
\(\left(\right. \frac{- 22}{9} \div \frac{33}{28} \cdot \frac{275}{- 275} \left.\right) = \left(\right. \frac{- 22}{9} \cdot \frac{28}{33} \cdot \left(\right. - 1 \left.\right) \left.\right) = \frac{616}{297}\)
Bước 3: Tính vế phải
Tử số:
\(\frac{2}{11} + \frac{3}{13} + \frac{4}{15} + \frac{5}{17} = \frac{35494}{36465}\)
Mẫu số:
\(4 \frac{1}{11} + \frac{5}{13} + \frac{9}{15} + \frac{13}{17} = \frac{149645}{36465}\)
→ Vế phải:
\(\frac{35494}{36465} \div \frac{149645}{36465} = \frac{35494}{149645}\)
Bước 4: Giải phương trình
\(\frac{616}{297} \cdot x = \frac{35494}{149645} \Rightarrow x = \frac{35494}{149645} \cdot \frac{297}{616} = \frac{813}{7118}\)
Vậy:
\(\boxed{x = \frac{813}{7118}}\)
hỉu không =]]]
\(\frac{x^2}{2}+\frac{18}{x^2}=13\left(\frac{x}{2}-\frac{3}{x}\right)\)
\(\Leftrightarrow\frac{x^2}{2}+\frac{18}{x^2}-\frac{13x}{2}+\frac{39}{x}=0\)
\(\Leftrightarrow\frac{x^4-13x^3+78x+36}{2x^2}=0\)
\(\Leftrightarrow x^4-13x^3+78x+36=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x^2-12x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-2;x=3\\x^2-12x-6=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2;x=3\\x=\frac{12\pm\sqrt{168}}{2}\end{cases}}\)