a)1/1x3+1/3x5+1/5x7+...+1/Xx(x+3)=99/200
b)1/1x3+1/3x5+1/5x7+...+1/Xx(x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)
\(\Leftrightarrow2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}\right)=2.\frac{8}{17}\)
\(\Leftrightarrow\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x\left(x+2\right)}=\frac{16}{17}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{16}{17}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{16}{17}=\frac{1}{17}\)
\(\Rightarrow x+2=17\Rightarrow x=15\)
sửa đề câu a và câu b nhá , mik nghĩ đề như này :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
= \(\frac{1}{1}-\frac{1}{215}\)
\(=\frac{214}{215}\)
b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)
\(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)
\(A\cdot2=\frac{214}{215}\)
\(A=\frac{214}{215}:2\)
\(A=\frac{107}{215}\)
a, Đặt :
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+..............+\dfrac{1}{19.21}\)
\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+............+\dfrac{2}{19.21}\)
\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+..........+\dfrac{1}{19}-\dfrac{1}{21}\)
\(\Leftrightarrow2A=1-\dfrac{1}{21}\)
\(\Leftrightarrow2A=\dfrac{20}{21}\)
\(\Leftrightarrow A=\dfrac{10}{21}\)
b, \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...........+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+............+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)
\(\Leftrightarrow2A=1-\dfrac{1}{2n+1}\)
\(\Leftrightarrow2A=\dfrac{2n}{2n+1}\)
\(\Leftrightarrow A=\dfrac{n}{2n+1}\)
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\frac{8}{9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{4}{9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{x}=1-\frac{4}{9}\)
\(\Rightarrow\frac{1}{x}=\frac{5}{9}\)
\(\Rightarrow x=\frac{1.9}{5}\)
\(\Rightarrow x=\frac{9}{5}\)
Vậy x = \(\frac{9}{5}\)
b) \(\frac{2}{3}-\frac{1}{3}.\left(x-2\right)=\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}.\left(x-2\right)=\frac{2}{3}-\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}.\left(x-2\right)=\frac{5}{12}\)
\(\Rightarrow x-2=\frac{5}{12}:\frac{1}{3}\)
\(\Rightarrow x-2=\frac{5}{4}\)
\(\Rightarrow x=\frac{5}{4}+2\)
\(\Rightarrow x=\frac{13}{4}\)
Vậy x = \(\frac{13}{4}\)
_Chúc bạn học tốt_
\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}\left(1-\frac{1}{11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}.\frac{10}{11}y=\frac{2}{3}\)
=> \(\frac{5}{11}y=\frac{2}{3}\)
=>y = \(\frac{2}{3}:\frac{5}{11}\)
=> y = \(\frac{22}{15}\)
cho mk cái lời giải thích chỗ nhân 1/2 ý mk ko hiểu mong bn thông cảm
Bài 1:
A = \(\dfrac{1}{1\times3}\) + \(\dfrac{1}{3\times5}\) + \(\dfrac{1}{5\times7}\) +...+ \(\dfrac{1}{2019\times2021}\)
A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{2}{1\times3}\) + \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\)+...+ \(\dfrac{2}{2019\times2021}\))
A = \(\dfrac{1}{2}\) \(\times\)( \(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+...+ \(\dfrac{1}{2019}\) - \(\dfrac{1}{2021}\))
A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{1}{1}\) - \(\dfrac{1}{2021}\))
A = \(\dfrac{1010}{2021}\)
\(2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).y=\frac{2}{3}\)
\(2\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(2.\left(\frac{1}{1}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(2.\frac{10}{11}.y=\frac{2}{3}\)
\(\frac{20}{11}.y=\frac{2}{3}\)
\(\Rightarrow y=\frac{11}{30}\)
Study well
a) \(\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{2}{5}\right)\times\left(1-\dfrac{2}{7}\right)\times\left(1-\dfrac{2}{9}\right)\)
\(=\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\times\left(\dfrac{5}{5}-\dfrac{2}{5}\right)\times\left(\dfrac{7}{7}-\dfrac{2}{7}\right)\times\left(\dfrac{9}{9}-\dfrac{2}{9}\right)\)
\(=\dfrac{2}{3}\times\dfrac{3}{5}\times\dfrac{5}{7}\times\dfrac{7}{9}\)
\(=\dfrac{2\times3\times5\times7}{3\times5\times7\times9}\)
\(=\dfrac{2}{9}\)
b) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)
\(=1-\dfrac{1}{9}\)
\(=\dfrac{9}{9}-\dfrac{1}{9}\)
\(=\dfrac{8}{9}\)
Sửa câu b)
b) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)
Đặt \(A=\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)
\(2A=\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}\)
\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)
\(2A=1-\dfrac{1}{9}\)
\(2A=\dfrac{9}{9}-\dfrac{1}{9}\)
\(2A=\dfrac{8}{9}\)
\(A=\dfrac{8}{9}:2\)
\(A=\dfrac{8}{18}\)
\(A=\dfrac{4}{9}\)
Vậy : \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}=\dfrac{4}{9}\)
a) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{x\times\left(x+3\right)}=\dfrac{99}{200}\)
Ta có: \(\left(1-\dfrac{1}{3}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\times\dfrac{1}{2}+...+\left(\dfrac{1}{x}-\dfrac{1}{x+3}\right).\dfrac{1}{2}=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{200}:\dfrac{1}{2}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=1-\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=\dfrac{1}{100}\)
\(\Rightarrow x+1=100\)
\(x=100-1\)
\(x=99\)
câu b thiếu kết quả đúng không bn?