K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 5 2021

Sure rằng đề bài sai, không ai cho 2 số bên vế trái giống hệt nhau như vậy cả

(Hơn nữa nếu đề bài đúng thì nghiệm của pt có logarit, lớp 9 chắc chắn chưa học)

a: \(\sqrt{6-4\sqrt2}+\sqrt{22-12\sqrt2}\)

\(=\sqrt{4-2\cdot2\cdot\sqrt2+2}+\sqrt{18-2\cdot3\sqrt2\cdot2+4}\)

\(=\sqrt{\left(2-\sqrt2\right)^2}+\sqrt{\left(3\sqrt2-2\right)^2}\)

\(=2-\sqrt2+3\sqrt2-2=2\sqrt2\)

b: \(\sqrt{\left(\sqrt3-\sqrt2\right)^2}+\sqrt2=\sqrt3-\sqrt2+\sqrt2=\sqrt3\)

c: \(3\sqrt5-\sqrt{\left(1-\sqrt5\right)^2}\)

\(=3\sqrt5-\left|1-\sqrt5\right|\)

\(=3\sqrt5-\left(\sqrt5-1\right)=2\sqrt5+1\)

d:Sửa đề: \(\sqrt{17-12\sqrt2}+\sqrt{6+4\sqrt2}\)

\(=\sqrt{9-2\cdot3\cdot2\sqrt2+8}+\sqrt{4+2\cdot2\cdot\sqrt2+2}\)

\(=\sqrt{\left(3-2\sqrt2\right)^2}+\sqrt{\left(2+\sqrt2\right)^2}=3-2\sqrt2+2+\sqrt2=5-\sqrt2\)

8 tháng 4 2021

a, Với \(x\ge0,x\ne4\)

\(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-5-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x-\sqrt{x}-12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)

b, Ta có  \(x=6+4\sqrt{2}=2^2+4\sqrt{2}+\left(\sqrt{2}\right)^2=\left(2+\sqrt{2}\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{\left(2+\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|=2+\sqrt{2}\)do \(2+\sqrt{2}>0\)

\(\Rightarrow A=\frac{2+\sqrt{2}-4}{2+\sqrt{2}-2}=\frac{-2+\sqrt{2}}{\sqrt{2}}=\frac{-2\sqrt{2}+2}{2}=\frac{-2\left(\sqrt{2}-1\right)}{2}=1-\sqrt{2}\)

30 tháng 6 2021

1, A = \(\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)

2 , A = \(1-\sqrt{2}\)

NV
12 tháng 5 2021

ĐKXĐ: ...

\(\Leftrightarrow3x-1-x\sqrt{3x-1}+x\sqrt{x+1}-\sqrt{\left(x+1\right)\left(3x-1\right)}=0\)

\(\Leftrightarrow\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)-\sqrt{x+1}\left(\sqrt{3x-1}-x\right)=0\)

\(\Leftrightarrow\left(\sqrt{3x-1}-\sqrt{x+1}\right)\left(\sqrt{3x-1}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=\sqrt{x+1}\\\sqrt{3x-1}=x\end{matrix}\right.\)

\(\Leftrightarrow...\)

12 tháng 5 2021

Cảm ơn chú nhìu :33

28 tháng 10 2023

loading...  Chúc Bạn Học Tốt.

8 tháng 4 2021

b, \(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\ge1\)

\(\frac{a^4}{ab+2ac}+\frac{b^4}{bc+2ab}+\frac{c^4}{ac+2bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)( Bunhia dạng phân thức )

mà \(a^2+b^2+c^2\ge ab+bc+ac\)

\(=\frac{\left(ab+bc+ac\right)^2}{3+2\left(ab+ac+bc\right)}=\frac{9}{3+6}=1\)( đpcm ) 

9 tháng 5 2021

1.

Điều kiện x \ge \dfrac14x41.

Phương trình tương đương với \left(\sqrt2.\sqrt{2x^2+x+1}-2\right)-\left(\sqrt{4x-1}-1\right)+2x^2+3x-2 = 0(2.2x2+x+12)(4x11)+2x2+3x2=0 \Leftrightarrow \dfrac{4x^2+2x-2}{\sqrt2.\sqrt{2x^2+x+1}+2} - \dfrac{4x-2}{\sqrt{4x-1}+1} + (x+2)(2x-1) = 02.2x2+x+1+24x2+2x24x1+14x2+(x+2)(2x1)=0\\ \Leftrightarrow (2x-1)\left(\dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2\right) = 0(2x1)(2

9 tháng 3 2016

Cậu sống ở đâu hở ? Lấy đâu ra toán khó thế ?

8 tháng 3 2016

Câu 3 sửa \(\int\limits_1^{3/2} \)

a: \(\left(2\sqrt{10}+3\sqrt{3}\right)^2=67+12\sqrt{30}\)

\(\left(3\sqrt{5}+2\sqrt{7}\right)^2=77+12\sqrt{35}\)

mà \(12\sqrt{30}< 12\sqrt{35};67< 77\)

nên \(2\sqrt{10}+3\sqrt{3}< 3\sqrt{5}+2\sqrt{7}\)

b: \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}\)

\(2^2=4\)

mà 5>4

nên \(\sqrt{2}+\sqrt{3}>2\)

2 tháng 9 2018

\(\sqrt{\left(2-\sqrt{3}\right)\left(\sqrt{6+\sqrt{2}}\right)}=2\)

=2.

NV
8 tháng 5 2021

1 bài Mincopxki khá quen:

\(P\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{\left(a+b+c\right)^2}}\)

Đến đây thì nó là bài Cô-si có biên, cứ tách ghép theo điểm rơi là được:

\(P\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{16\left(a+b+c\right)^2}+\dfrac{1215}{16\left(a+b+c\right)^2}}\)

\(P\ge\sqrt{2\sqrt{\dfrac{81\left(a+b+c\right)^2}{16\left(a+b+c\right)^2}}+\dfrac{1215}{16.\left(\dfrac{3}{2}\right)^2}}=\dfrac{3\sqrt{17}}{2}\)

Dấu "=" xayr a khi \(a=b=c=\dfrac{1}{2}\)