Trong Ví dụ 1, chứng minh rằng 4 điểm C, D, E, F đồng phẳng và tứ giác CDFE là hình bình hành.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
a. AB//CD (ABCD là hình bình hành) M thuộc AB N thuộc CD => BM // DN
Xét tứ giác AMCN có:
MB=DN (gt)
BM// DN
=> tứ giác AMCN là hình bình hành
b. Gọi giao điểm của AC và BD là O
=> O là trung điểm của AC và BD (tính chất hình bình hành)
Hình bình hành MBND có
O là trung điểm của BD
MN là đường chéo hình bình hành MBND
O là trung điểm MM
=> MN đi qua O
=> AC,BD,MN đồng quy tại một điểm
c.
Bài 2 :
a. AB = CD (ABCD là hình bình hành)
Mà AB = BE (A đối xứng E qua B)
=> CD=BE
AB // CD (ABCD là hình bình hành)
Mà E thuộc AC
=> CD//BE
Xét tứ giác DBEC:
CD=BE (CM)
CD//BE (CM)
=> DBEC là hình bình hành
b.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Ta có: ABCD là hình bình hành
=>AB=CD(1)
Ta có: E là trung điểm của AB
=>\(EA=EB=\dfrac{AB}{2}\left(2\right)\)
Ta có: F là trung điểm của CD
=>\(FC=FD=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra EA=EB=FC=FD
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFDlà hình bình hành
Hình bình hành AEFD có \(AE=AD\left(=\dfrac{AB}{2}\right)\)
nên AEFD là hình thoi
c: Xét tứ giác EBCF có
BE//FC
BE=FC
Do đó: EBCF là hình bình hành
Hình bình hành EBCF có \(EB=BC\left(=\dfrac{AB}{2}\right)\)
nên EBCF là hình thoi
=>EC\(\perp\)BF tại trung điểm của mỗi đường
=>EC\(\perp\)BF tại K và K là trung điểm chung của EC và BF
Ta có: AEFD là hình thoi
=>AF\(\perp\)ED tại trung điểm của mỗi đường
=>AF\(\perp\)ED tại I và I là trung điểm chung của AF và ED
Ta có: AEFD là hình thoi
=>EF=AD
mà AD=DC/2
nên EF=DC/2
Xét ΔEDC có
EF là đường trung tuyến
\(EF=\dfrac{CD}{2}\)
Do đó: ΔEDC vuông tại E
Xét tứ giác EIFK có
\(\widehat{EIF}=\widehat{EKF}=\widehat{IEK}=90^0\)
=>EIFK là hình chữ nhật
d: Để EIFK là hình vuông thì FI=FK
mà \(FI=\dfrac{FA}{2};FK=\dfrac{FB}{2}\)
nên FA=FB
=>ΔFAB cân tại F
Ta có: ΔFAB cân tại F
mà FE là đường trung tuyến
nên FE\(\perp\)AB
ta có: FE\(\perp\)AB
FE//AD
Do đó: AD\(\perp\)AB
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D M N I K
nối BD và AC
trong tam giác ABC ta có: M và N lần luợt là trung đỉêm của AB và AC
=> MN là đuờng trung bình của tam giác ABC
=> MN//AC(
trong tam giác ADC ta có I và K lần luợt là trung điểm của DC và DA
=> KI là đuờng trung bình của tam giác ADC
=> KI//AC
ta có: KI//AC
MN//AC
=> KI//MN(1)
trong tam giác ABD có M và K lần luợt là trung điểm của AB và AD
=> MK là đuờng trung bình của tam giác ADB
=> MK//DB
trong tam giác CDB có I và N lần luợt là trung điểm của DC và CB
=> IN là đuờng trung bình của tam, giác CDB
=>IN//BD
ta có: MK//DB
IN//DB
=> MK//IN(2)
từ (1)(2)=> MK//IN
MN//KI
=> MNIK là hình bình hành
Bài 1:Vẽ đường chéo BD
Xét tam giác ADB có:
M là trung điểm của AB
K là trung điểm của AD
=>KM là đường trung bình của tam giác ADB
=>KM//DB(1) và KM=1/2 DB(3)
Xét tam giác BCD có:
N là trung điểm của BC
I là trung điểm của DC
=>NI là đường trung bình của tam giác BCD
=>NI//DB(2) và NI=1/2DB(4)
Từ (1) và (2)=>KM//NI( //DB)(5)
Từ (3) và (4)=>KM=NI(=1/2 DB)(6)
Từ (5) và (6)=>KMNI là hình bình hành (dhnb3)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BF và ED=BF
hay BEDF là hình bình hành
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)
\(CF=FD=\dfrac{CD}{2}\)(F là trung điểm của CD)
mà AB=CD(Hai cạnh đối của hình bình hành ABCD)
nên AE=CF=FD=EB
Xét tứ giác AECF có
AE//CF(AB//CD, E∈AB, F∈CD)
AE=CF(cmt)
Do đó: AECF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét tứ giác AEFD có
AE//FD(AB//CD, E∈AB, F∈CD)
AE=FD(cmt)
Do đó: AEFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
c) Ta có: AF//CE(Hai cạnh đối trong hình bình hành AECF)
mà H∈AF(gt)
và K∈CE(gt)
nên HF//KC và EK//AH
Xét ΔDKC có
F là trung điểm của CD(gt)
FH//DK(cmt)
Do đó: H là trung điểm của DK(Định lí 1 về đường trung bình của tam giác)
⇒DH=KH(1)
Xét ΔABH có
E là trung điểm của AB(gt)
EK//BH(cmt)
Do đó: K là trung điểm của BH(Định lí 1 về đường trung bình của tam giác)
⇒BK=KH(2)
Từ (1) và (2) suy ra DH=HK=KB(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\overrightarrow{AB}=\left(-1;2\right);\overrightarrow{AC}=\left(-5;3\right);\overrightarrow{BC}=\left(-4;1\right)\)
Vì -1/-5<>2/3
nên A,B,C ko thẳng hàng
=>A,B,C là ba đỉnh của 1 tam giác
b: \(AB=\sqrt{\left(-1\right)^2+2^2}=\sqrt{5}\)
\(AC=\sqrt{\left(-5\right)^2+3^2}=\sqrt{34}\)
\(BC=\sqrt{\left(-4\right)^2+1^2}=\sqrt{17}\)
\(C=\sqrt{5}+\sqrt{34}+\sqrt{17}\left(cm\right)\)
\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\simeq0,844\)
=>sinBAC=0,54
\(S_{ABC}=\dfrac{1}{2}\cdot\sqrt{5}\cdot\sqrt{34}\cdot0.36\simeq2.35\left(cm^2\right)\)
c: ADBC là hình bình hành
=>vecto AD=vecto CB
=>x-3=2-(-2) và y+1=1-2
=>x-3=2+2 và y=-2
=>x=7 và y=-2
Xét hình bình hành ABCD ta có: AB // CD, AB = CD
Xét hình bình hành ABEF ta có: AB // EF, AB = EF
Suy ra EF//CD, EF = CD
Suy ra CDEF là hình bình hành và C, D, E, F đồng phẳng