Chứng tỏ rằng 5^60n < 2^140n < 3^100n (n thuộc N*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có:
5⁶⁰ⁿ = (5³)²⁰ⁿ = 125²⁰ⁿ
2¹⁴⁰ⁿ = (2⁷)²⁰ⁿ = 128²⁰ⁿ
3¹⁰⁰ⁿ = (3⁵)²⁰ⁿ = 243²⁰ⁿ
Do 125 < 128 < 243
125²⁰ⁿ < 128²⁰ⁿ < 243²⁰ⁿ
Vậy 5⁶⁰ⁿ < 2¹⁴⁰ⁿ < 3¹⁰⁰ⁿ

\(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2.n^2+2n+1}< \frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{2.n^2+2n}\)
\(A< \frac{1}{2}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n.\left(n+1\right)}\right)\)
\(A< \frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n.\left(n+1\right)}\right)\)
\(A< \frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{n}-\frac{1}{n+1}\right)\)
\(A< \frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\)

M = 1/2.2 + 1/3.3 +.....+ 1/n.n
M < 1/1.2 + 1/2.3 +.....+ 1/(n-1).n
M < 1 - 1/2 + 1/2 - 1/3 +......+ 1/n-1 - 1/n
M < 1 - 1/n < 1
=> M < 1 (đpcm)
Ai k mk mk k lại cho,kết bạn luôn nhé!

Ta có: \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\)
\(\Rightarrow\frac{1}{5}+\frac{1}{13}+...+\frac{1}{n^2+\left(n+1\right)^2}\)
\(=\frac{1}{1^2+2^2}+\frac{1}{2^2+3^2}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2.1.2}+\frac{1}{2.2.3}+...+\frac{1}{2.n.\left(n+1\right)}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{n.\left(n+1\right)}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\text{…}+\frac{1}{2^{n-1}}\)
\(2A-A=1+\frac{1}{2}+\frac{1}{2^2}+\text{…}+\frac{1}{2^{n-1}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\text{…}-\frac{1}{2^n}\)
\(A=1-\frac{1}{2^n}\)
Vậy A < 1 với n thuộc N*

A=\(\frac{3}{1.4}+\frac{3}{4.7}+...........+\frac{3}{n.\left(n+3\right)}\)
A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...............+\frac{1}{n}-\frac{1}{n+3}\)
A=\(1-\frac{1}{n+3}\)<1
Vậy A<1(đpcm)

Ta xét biểu thức:
\(A = \frac{1}{5^{2}} + \frac{2}{5^{3}} + \frac{3}{5^{4}} + \hdots + \frac{n}{5^{n + 1}} \text{v}ớ\text{i}\&\text{nbsp}; n \in \mathbb{N}\)
Bước 1: Xét tổng vô hạn tương ứng
Ta xét tổng vô hạn:
\(S = \sum_{k = 1}^{\infty} \frac{k}{5^{k + 1}}\)
Đặt \(S = \sum_{k = 1}^{\infty} \frac{k}{5^{k + 1}}\), ta muốn tính giá trị này để ước lượng \(A\), vì rõ ràng:
\(A = \sum_{k = 1}^{n} \frac{k}{5^{k + 1}} < \sum_{k = 1}^{\infty} \frac{k}{5^{k + 1}} = S\)
Bước 2: Tính tổng vô hạn \(S\)
Ta đặt:
\(S = \sum_{k = 1}^{\infty} \frac{k}{5^{k + 1}} = \frac{1}{5} \sum_{k = 1}^{\infty} \frac{k}{5^{k}}\)
Giờ xét:
\(T = \sum_{k = 1}^{\infty} \frac{k}{5^{k}}\)
Tổng này là tổng lũy thừa có công thức:
\(\sum_{k = 1}^{\infty} k x^{k} = \frac{x}{\left(\right. 1 - x \left.\right)^{2}} , \text{v}ớ\text{i}\&\text{nbsp}; \mid x \mid < 1\)
Thay \(x = \frac{1}{5}\), ta có:
\(T = \sum_{k = 1}^{\infty} \frac{k}{5^{k}} = \frac{\frac{1}{5}}{\left(\left(\right. 1 - \frac{1}{5} \left.\right)\right)^{2}} = \frac{\frac{1}{5}}{\left(\left(\right. \frac{4}{5} \left.\right)\right)^{2}} = \frac{1 / 5}{16 / 25} = \frac{1}{5} \cdot \frac{25}{16} = \frac{5}{16}\)
Do đó:
\(S = \frac{1}{5} \cdot \frac{5}{16} = \frac{1}{16}\)
Bước 3: So sánh với A
Vì:
\(A = \sum_{k = 1}^{n} \frac{k}{5^{k + 1}} < \sum_{k = 1}^{\infty} \frac{k}{5^{k + 1}} = \frac{1}{16}\)
Nên ta có:
\(\boxed{A < \frac{1}{16}}\)
✅ Kết luận: Với mọi \(n \in \mathbb{N}\), ta có:
\(A = \frac{1}{5^{2}} + \frac{2}{5^{3}} + \frac{3}{5^{4}} + \hdots + \frac{n}{5^{n + 1}} < \frac{1}{16}\)
Để chứng minh rằng \(A < \frac{1}{16}\), ta cần phân tích và tính giá trị của \(A\), nơi:
\(A = \frac{1}{5^{2}} + \frac{2}{5^{3}} + \frac{3}{5^{4}} + \hdots + \frac{n}{5^{n}} + 1\)
1. Biểu diễn \(A\) dưới dạng tổng
Biểu thức của \(A\) có thể viết lại như sau:
\(A = \sum_{k = 2}^{\infty} \frac{k - 1}{5^{k}} + 1\)
Chúng ta sẽ tách phần tổng lại thành 2 phần:
\(A = 1 + \sum_{k = 2}^{\infty} \frac{k}{5^{k}}\)
2. Tính tổng \(\sum_{k = 2}^{\infty} \frac{k}{5^{k}}\)
Để tính tổng này, ta sử dụng một phương pháp dựa trên sự phát triển của chuỗi số học trong chuỗi lũy thừa.
Đầu tiên, xét chuỗi cơ bản sau:
\(S = \sum_{k = 1}^{\infty} x^{k} = \frac{x}{1 - x} \text{v}ớ\text{i}\&\text{nbsp}; \mid x \mid < 1\)
Bước 1: Tính tổng của chuỗi số \(\sum_{k = 2}^{\infty} \frac{1}{5^{k}}\)
Áp dụng công thức chuỗi số học cho \(x = \frac{1}{5}\):
\(\sum_{k = 1}^{\infty} \frac{1}{5^{k}} = \frac{\frac{1}{5}}{1 - \frac{1}{5}} = \frac{1}{4}\)
Bước 2: Tính tổng của chuỗi số \(\sum_{k = 2}^{\infty} \frac{k}{5^{k}}\)
Sử dụng công thức chuỗi tổng quát và tính tổng khi có một hệ số \(k\) trong tử số:
\(\sum_{k = 2}^{\infty} \frac{k}{5^{k}} = \frac{1}{4}\)
\(5^{60n}< 2^{140n}< 3^{100n}\)
\(5^{60n}=\left(5^3\right)^{20n}=125^{20n}\\ 2^{140n}=\left(2^7\right)^{20n}=128^{20n}\\ 3^{100n}=\left(3^5\right)^{20n}=243^{20n}\)
Mà\(125< 128< 243\Rightarrow125^{20n}< 128^{20n}< 243^{20n}\Rightarrow5^{60n}< 2^{140n}< 3^{100n}\)
Vậy đã CMR: \(5^{60n}< 2^{140n}< 3^{100n}\)