Tìm số nguyên x thỏa mãn 3/1+3/3+3/6+3/10+...3/x(x+1):2=2015/336
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1, có từ 1đến 100 có 100 số hạng .Chia thành 50 nhóm .Mỗi nhóm co 2 số hạng
Suy ra A= [1+(-2)]+[3+(-4)]+......+[99+(-100)]
A= (-1)+(-1)+.... +(-1)
A= (-1).50=(-50)
2,A=(1-2)+(3-4)+.....+(2015-2016)
A=(-1)+(-1)+....+(-1)
A có 2016 số hạng .Chia thành 1008 nhóm .Mỗi nhóm co 2 số hạng và có tổng =(-1)
A=(-1).1008=(-1008)
\(A=\left(1+3+...+99\right)-\left(2+4+...+100\right)\)
\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)
\(A=2500-2550=-50\)
Đúng ko ta lâu rồi ko làm.
\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)

Lời giải:
Gọi $d=ƯCLN(x+2022, x+2015)$
$\Rightarrow (x+2022)-(x+2015)\vdots d$
$\Rightarrow 7\vdots d$
$\Rightarrow d=1$ hoặc $d=7$
Nếu $d=1$ thì $x+2022, x+2015$ nguyên tố cùng nhau
$\Rightarrow (x+2022)^2, (x+2015)^3$ nguyên tố cùng nhau
$\Rightarrow$ để $(x+2022)^2=64(x+2015)^3$ thì:
$x+2015=1, (x+2022)^2=64$
$\Rightarrow x=-2014$ (tm)
Nếu $d=7$ thì đặt $x+2022=7a, x+2015=7b$ với $a,b$ nguyên tố cùng nhau.
Khi đó: $(7a)^2=64(7b)^3$
$\Rightarrow a^2=448b^3$
Vì $(a,b)=1$ nên $b=1; a^2=448$ (vô lý vì 448 không là scp)
Vậy.......