Tam giác ABC có AB=6cm. Tia phân giác của góc B cắt cạnh AC tại M, biết MA/MC=1/3. Tính BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)
Xét tam giác ABM và tam giác ACM có :
góc B = góc C (gt )
AB=AC ( gt )
góc A1 = góc A2 (gt )
suy ra : tam giác ABM = tam giác ACM ( g - c -g )
b )
ta có : tam giác ABM = tam giác ACM suy ra : BM = CM = BC : 2 = 3 (cm )
Theo định lí pitago trong tam giác vuông ABM có :
AB2 = AM2 + BM2
SUY RA : AM2 = AB2 - BM2
AM2 = 52 - 32
AM = căn bậc 2 của 16 = 4 (cm )
c )
Do D nằm giữa 2 điểm M và C nên ta có :
MD + DC = MC
suy ra : MC > MD
Đúng thì nha bạn

a) Xét ΔABC có
BM là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)
hay \(\dfrac{AM}{CM}=\dfrac{AB}{BC}\)(1)
Xét ΔABC có
CN là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AN}{AC}=\dfrac{BN}{BC}\)
hay \(\dfrac{AN}{BN}=\dfrac{AC}{BC}\)(2)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AN}{BN}=\dfrac{AM}{MC}\)
hay MN//BC(Đpcm)
b) Ta có: \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)(cmt)
nên \(\dfrac{AM}{5}=\dfrac{CM}{6}\)
mà AM+CM=AC(M nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{5}=\dfrac{CM}{6}=\dfrac{AM+CM}{5+6}=\dfrac{AC}{11}=\dfrac{5}{11}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AM}{5}=\dfrac{5}{11}\\\dfrac{CM}{6}=\dfrac{5}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AM=\dfrac{25}{11}\left(cm\right)\\CM=\dfrac{30}{11}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC có MN//BC(cmt)
nên \(\dfrac{MN}{BC}=\dfrac{AM}{AC}\)(Hệ quả Định lí Ta lét)
\(\Leftrightarrow\dfrac{MN}{6}=\dfrac{25}{11}:5=\dfrac{25}{11}\cdot\dfrac{1}{5}=\dfrac{5}{11}\)
hay \(MN=\dfrac{30}{11}\left(cm\right)\)
c) Nửa chu vi của ΔABC là:
\(P_{ABC}=\dfrac{AB+AC+BC}{2}=\dfrac{5+5+6}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{8\cdot\left(8-5\right)\cdot\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot3\cdot3\cdot2}=\sqrt{16\cdot9}=4\cdot3=12\left(cm^2\right)\)
Ta có: ΔANM∼ΔABC(gt)
nên \(\dfrac{S_{ANM}}{S_{ABC}}=\left(\dfrac{AM}{AC}\right)^2=\left(\dfrac{5}{11}\right)^2=\dfrac{25}{121}\)
\(\Leftrightarrow S_{ANM}=\dfrac{25}{121}\cdot12=\dfrac{300}{121}\left(cm^2\right)\)

zì tam giác ABC có tia phân giác AM
=>\(\frac{BM}{MC}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)(1)
mà BM+MC=11 (2)
Từ 1 zà 2 ta có hệ phương trình
\(\hept{\begin{cases}MB+MC=11\\\text{4MB-3MC=0 }\end{cases}}\)
\(\hept{\begin{cases}MB=\frac{33}{7}\\MC=\frac{44}{7}\end{cases}}\)

a: Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC
hay MB=MC

a: Xét ΔABM và ΔDBM có
BA=BD
\(\widehat{ABM}=\widehat{DBM}\)
BM chung
Do đó: ΔABM=ΔDBM
b: Ta có: ΔBAM=ΔBDM
nên \(\widehat{BAM}=\widehat{BDM}=90^0\)
hay MD\(\perp\)BC
c: Ta có: MA=MD
mà MD<MC
nên MA<MC

a:
BM=BC-CM=3cm
Xét ΔABC có AM là phân giác
nên AB/BM=AC/CM
=>AB/3=6/2=3
=>AB=9cm
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
góc BAH=góc CAK
=>ΔABH đồng dạng với ΔACK
Xét ▲ABC có BM là pg (gt)=> \(\dfrac{AM}{MC}\) =\(\dfrac{AB}{BC}\) (tính chất tia phân giác)
Thay số: \(\dfrac{1}{3}\) =\(\dfrac{6}{BC}\) => BC+3.6:1 =18 (cm)