chứng minh rằng đa thức G(x)= x^2020 + x^2021 + 2019 không có nghiệm nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn kiểm tra đề có vấn đề gì không nhé.
Vì ta có đa thức \(P\left(x\right)\)có hệ số nguyên thì \(\left[P\left(a\right)-P\left(b\right)\right]⋮\left(a-b\right)\).
Ta có: \(2021=1.2021=43.47\)
\(20-11=9\Rightarrow P\left(20\right)-P\left(11\right)⋮9\)
Do là đa thức có hệ số nguyên nên \(P\left(20\right),P\left(11\right)\)đều là số nguyên.
Ta thử các trường hợp của \(P\left(20\right)\)và \(P\left(11\right)\) đều không có trường hợp nào thỏa mãn \(P\left(20\right)-P\left(11\right)⋮9\).
đây là câu hỏi nâng cao chứ chắc ko sai đây ạ
mình đang cần làm cái cmr ý ạ
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử đa thức \(f\left(x\right)-2022\) có nghiệm nguyên \(x=a\)
\(\Rightarrow f\left(x\right)-2022=\left(x-a\right).g\left(x\right)\) với \(g\left(x\right)\) là đa thức nhận giá trị nguyên khi x nguyên
\(\Rightarrow f\left(x\right)=\left(x-a\right).g\left(x\right)+2022\) (1)
Lại có với a nguyên thì \(\left(2020-a\right)-\left(2019-a\right)=1\) lẻ nên 2020-a và 2019-a luôn khác tính chẵn lẻ
\(\Rightarrow\left(2019-a\right)\left(2020-a\right)\) luôn chẵn
Lần lượt thay \(x=2020\) và \(x=2019\) vào (1) ta được:
\(f\left(2019\right)=\left(2019-a\right).g\left(2019\right)+2022\)
\(f\left(2020\right)=\left(2020-a\right).g\left(2020\right)+2022\)
Nhân vế với vế:
\(f\left(2019\right).f\left(2020\right)=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)
\(\Leftrightarrow2021=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)
Do \(\left(2019-a\right)\left(2020-a\right)g\left(2019\right).g\left(2020\right)\) chẵn \(\Rightarrow\) vế phải chẵn
Mà vế trái lẻ \(\Rightarrow\) vô lý
Vậy điều giả sử là sai hay đa thức đã cho không có nghiệm nguyên
![](https://rs.olm.vn/images/avt/0.png?1311)
G/s f ( x) = 0 có nghiệm nguyên là a
Khi đó: \(f\left(x\right)=\left(x-a\right)g\left(x\right)\)
Ta có: f ( 2017 ) . f(2018) = 2019
<=> ( 2017 - a ) . g(2017). ( 2018 - x ) . g ( 2018) = 2019
<=> ( 2017 - a ) . ( 2018 - a ) . g ( 2018) . g(2017).= 2019
Nhận xét thấy một điều rằng ( 2017 - a ) và (2018 - a ) là hai số nguyên liền nhau
=> ( 2017 - a ) . ( 2018 - a) \(⋮\)2 => VT \(⋮\)2 => 2019 \(⋮\)2 điều này vô lí
Vậy không tồn tại; hay f(x) = 0 không có nghiệm nguyên.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Giả sử $P(x)$ có nghiệm $a$ nguyên. Khi đó:
$a^3-3a+5=0$
$\Leftrightarrow a(a^2-3)=-5$
Khi đó ta xét các TH sau:
TH1: $a=1; a^2-3=-5$
$\Leftrightarrow a=1$ và $a^2=2$ (vô lý)
TH2: $a=-1; a^2-3=5$
$\Leftrightarrow a=-1; a^2=8$ (vô lý)
TH3: $a=5; a^2-3=-1$
$\Leftrightarrow a=5$ và $a^2=2$ (vô lý)
TH4: $a=-5; a^2-3=1$
$\Leftrightarrow a=-5$ và $a^2=4$ (vô lý)
Vậy điều giả sử là sai, tức $P(x)$ không có nghiệm nguyên.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P\left(x\right)=x^3-x+5=0\)
\(x^3-x=-5\)
\(x.\left(x^2-1\right)=-5\)
Lập bảng ( vì đề nhủ c/m nghiệm nguyên)
Loại cả 4 cái
vậy...
Ta có : P( x ) = x3 - x + 5
= x ( x2 - 1 ) + 5
= x ( x - 1 ) ( x + 1 ) + 5
Gọi P( x ) có nghiệm nguyên là : x = a
\( \implies\)P( a ) = a ( a - 1 ) ( a + 1 ) + 5 = 0
\( \implies\) a ( a - 1 ) ( a + 1 ) = - 5
Vì a là số nguyên \( \implies\) a ; ( a - 1 ) ; ( a + 1 ) là ba số nguyên liên tiếp . Do đó chúng chia hết cho 2
Mà - 5 không chia hết cho 2
\( \implies\) a ( a - 1 ) ( a + 1 ) không thể bằng - 5
\( \implies\) Không có giá trị a nguyên nào thỏa mãn P( a ) = 0
Vậy đa thức P( x ) = x3 - x + 5 không có nghiệm nguyên ( đpcm )
Có x^2020 lớn hơn hoặc bằng 0 với mọi x
x^2020+x^2021+2019 lớn hơn hoặc bằng 2019 với mọi x
=> x^2020+x^2021+2019>0 với mọi x
=>G(x) vô nghiệm