Tìm 3 số tự nhiên sao cho tổng của chúng bằng tích của chúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) n=7k+1 ( \(k\in N\))
b) 18 va 66 hoac 6 va 78 hoac 30 va 54
c) 15 va 20 hoac 5 va 60
d) 10 va 900 hoac 20 va 450 hoac 180 va 50 hoac 100 va 90
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi 3 số đó là x; y; z
Theo bài cho ta có: x + y + z = x.y.z
Không mất tính tổng quát , coi x < y < z
=> x + y + z < z + z+ z => xyz < 3z => xy < 3 (vì z > 0)
do x; y là số tự nhiên khác 0 nên xy = 1 hoặc xy = 2
+) xy = 1 => x = y = 1 => 2 + z = z (Vô lí ) => Loại
+) xy = 2 = 1.2 mà x < y nên x = 1 ; y = 2 => 1 + 2 +z = 2z => 3 = z
Vậy 3 số đó là 1;2;3
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi 6 số cần tìm là a,b,c,d,e,f ( a,b,c,d,e,f là các số tự nhiên )
ta có a+b+c+d+e+f = abcdef
+ a =b=c=d=e=f suy ra : 6a = a6
nếu a= 0 thì a=b=c=d=e=f=0 tm 6a = a6 (chọn )
nếu a lớn hơn bằng 1: suy ra a5 = 6 ( ko tồn tại số tự nhiên a tm ) (loại)
+ a,b,c,d,e,f đôi một khác nhau : suy ra a+b+c+d+e+f lớn hơn 0
suy ra a,b,c,d,e,f khác 0 , abcdef khác 0
suy ra a+b+c+d+e+f luôn nhỏ hơn abcdef ( ko tm với đề bài) (loại )
Vậy a=b=c=d=e=f tmđb
![](https://rs.olm.vn/images/avt/0.png?1311)
tích của chúng=2015 nên sẽ có 1 số có tận cùng là 5
=>số còn lại có tận cùng là 0
=>tích có tận cùng là 0
=>mâu thuẫn với đề bài
=>không có 2 số nào thỏa mãn với đề bài
Giả sử 3 số tự nhiên đó lần lượt là a, b, c. Theo yêu cầu đề bài, ta có phương trình:
a + b + c = abc
Chia cả 2 vế của phương trình trên cho abc, ta có:
1/a + 1/b + 1/c = 1
Đây là phương trình Diophantus của bài toán. Chúng ta sẽ giải phương trình này bằng phương pháp thủ công như sau:
Ta có thể giả sử a ≤ b ≤ c (do tính chất giao hoán và kết hợp của phép nhân)
Trường hợp a = 1. Ta có 1/b + 1/c = 1, kết hợp với a ≤ b ≤ c, ta có b ≥ 2, c ≥ 3. Thử từng trường hợp b = 2, 3, ... ta sẽ tìm ra được 1 nghiệm là (1, 2, 3)
Trường hợp a = 2. Ta có 1/b + 1/c = 1/2. Kết hợp với a ≤ b ≤ c, ta có b ≥ 3, c ≥ 5. Thử từng trường hợp b = 3, 4, ... và kiểm tra nghiệm c tương ứng, ta không tìm được nghiệm nào.
Trường hợp a = 3. Ta có 1/b + 1/c = 2/9. Tương tự, ta có b ≥ 4, c ≥ 13. Thử từng trường hợp b = 4, 5, ... và kiểm tra nghiệm c tương ứng, ta không tìm được nghiệm nào.
Vậy nghiệm duy nhất của phương trình ban đầu là (1, 2, 3).