tìm các số nguyễn x,y,z thỏa mãn
(x+y).(x-y)=\(8^z\)+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^2+4y^2+z^2-4x+4y-8z+24=0\)
\(\Leftrightarrow x^2-4x+4+4y^2+4y+1+z^2-8z+16+3=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+\left(z^2-8z+16\right)+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+3=0\)
Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(2y+1\right)^2\ge0\\\left(z-4\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+3\ge3\ne0\)
Vậy không có số thực x, y, z nào thỏa mãn đẳng thức.
\(\dfrac{-10}{15}=\dfrac{x}{9}=\dfrac{-8}{y}=\dfrac{z}{-21}\)
có: \(\dfrac{-10}{15}=\dfrac{x}{9}\\ =>15x=-90\\ =>x=-6\)
có
\(\dfrac{-6}{9}=\dfrac{-8}{y}\\ =>-6y=-72\\ =>y=12\)
có:
\(\dfrac{-8}{12}=\dfrac{z}{-21}\\ =>12z=168\\ =>z=14\)
bạn tham khảo ở đây: Câu hỏi của Nguyễn Phương Linh - Toán lớp 8 - Học toán với OnlineMath
Ta có:
\(\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)=3+\left(\frac{xz}{y^2}+\frac{y^2}{xz}\right)+\left(\frac{x^2}{yz}+\frac{yz}{x^2}\right)+\left(\frac{z^2}{xy}+\frac{xy}{z^2}\right)\)
\(\ge3+2\sqrt{\frac{xy^2z}{y^2xz}}+2\sqrt{\frac{x^2yz}{yzx^2}}+2\sqrt{\frac{z^2xy}{xyz^2}}=3+2+2+2=9\)
Dấu \(=\)xảy ra khi \(x=y=z\).
Suy ra giả thiết xảy ra khi \(x=y=z\)suy ra \(x=y=z=1\).