trong mat phang toa do Oxy cho A(0;6); B(6;0); C(1;1). Tinh dien tich tam giac ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
mf (a) đi wa O(0;0;0) có VTPT :na=ud =(1,2,3) →pt :x+2y+3z=0
M ϵ d → M( t; -1+2t; -2+3t) d(M; (p))=2= \(\frac{5-t}{\sqrt{5}}\) tìm đk : t=5+2\(\sqrt{5}\) và t=5-2\(\sqrt{5}\) →tìm đk 2 tọa độ M
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đi tìm kho báu vòng 8, nhập 6 là đúng nhưng ViOlympi báo sai. Vì vậy muốn biết đáp án của ViOlympi thì tick mình đi rồi mình nói cho
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi tâm I thuộc d : 3x-y-3=0 nên \(I\left(a;3a-2\right)\)Vì (C) đi qua A và B nên ta có IA=IB
\(\overrightarrow{IA}=\left(3-a;3-3a\right)\Rightarrow IA^2=\left(3-a\right)^2+\left(3-3a\right)^2\)
\(\overrightarrow{IB}=\left(-1-a;5-3a\right)\Rightarrow IB^2=\left(1+a\right)^2+\left(5-3a\right)^2\)
Có IA=IB nên \(\left(3-a\right)^2+\left(3-3a\right)^2=\left(1+a\right)^2+\left(5-3a\right)^2\Leftrightarrow-8+4a=0\Leftrightarrow a=2\) Vậy I(2;4) \(R=IA=\sqrt{10}\)
Vậy ptdt (C) là : \(\left(x-2\right)^2+\left(y-4\right)^2=10\)
cậu tìm cạnh AB, BC ,AC ra , rồi áp dụng hệ thức Hê rông là ra nhá cậu :
hay tớ làm luôn cho nhé ,
AB = 6 căn 2
BC = căn 26
AC = căn 26
Áp dụng hệ thức Hê rông thì diện tích tam giác là 12 .