CHO TAM GIÁC ABC VUÔNG TẠI A; AH vuông góc với BC. chu vi tam giác AHB bằng 30cm,chu vi tam giác AHC bằng 40cm.tính chu vi tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có : tam giác ABC vuông cân => ABC = BCA = 45 độ
Và tam giác BCD vuông cân => BCD = BDC = 450
=> Tứ giác ABCD = ABC + BCD = 45 + 45 = 90 độ
Vậy tứ giác ABCD là tứ giác vuông

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
Xét ΔHAC và ΔABC có
góc H=góc A
góc C chung
=>ΔHAC đồng dạngvới ΔABC
b: Xet ΔABC vuông tại A có AH vuông góc BC
nên AB*AC=AH*BC; AB^2=BH*BC; AC^2=CH*CB; HA^2=HB*HC; 1/AH^2=1/AB^2+1/AC^2

cho tam giác abc vuông tại A (AB<AC) ke Ah vuông với bc tại h trê cạnh ac lấy điểm d sao cho ad=ah gọi e là trung điểm của hd tia ae cắt bc tai f cm a) tam giác ahe= tam giác ade và ae vuông tại hd b) tam giác ahf = tam giác adf c) góc dfc= góc abc

Xét \(\triangle ABD\) vuông tại \(A\) và \(\triangle HBD\) vuông tại H \(( DH \bot BC)\) ta có :
\(\widehat{ABD}=\widehat{HBD}\) ( tia phân giác của \(\widehat{ABC}\) cắt \(AC\) tại \(D\) )
Chung \(BD\)
\(\Rightarrow\) \(\triangle ABD\) \(=\) \(\triangle HBD\) ( ch - gn )
\(\Rightarrow AB = BH\) ( \(2\) cạnh tương ứng ) (1)
Do \(\begin{cases} \widehat{BAD} = 90^o\\ \widehat{BHD} = 90^0\end{cases}\)
\(\Rightarrow \widehat{KAD} = \widehat{CHD} = 90^o\)
Xét \(\triangle AKD\) vuông tại \(A\) và \(\triangle HCD\) vuông tại \(H\) ta có :
\(\widehat{ADK} = \widehat{HDC}\) ( \(2\) góc đối đỉnh )
\(AD=DH \) ( \(\triangle ABD = \) \(\triangle HBD\) )
\(\Rightarrow\) \(\triangle AKD=\) \(\triangle HCD\) ( cgv - gnk )
\(\Rightarrow AK = CH\) ( \(2\) cạnh tương ứng ) (2)
Từ (1) và (2)
\(\Rightarrow AB+AK = BH+CH\)
\(\Leftrightarrow BK=BC\)
\(\Rightarrow \triangle KBC\) cân tại \(B\)

Có AB^2 = BC . BH
AC^2 = BC . CH
AB^2 : AC^2 = (BC . BH ) : ( BC . CH)
400/ 441 = BH / CH suy ra BH= 400/ 441 . CH
mà AH2 = BH . CH= CH2 . 400 /441
2402 = CH2 . 400/441
suy ra CH= 252
từ đó tính tiếp nhé
Bài này hình như bằng 50 đó bạn