Cho tam giác ABC có góc A vuông , cạnh AB =40cm ;cạnh AC =60cm . EDAC là hình thang có chiều cao10cm .(E ở trên cạnh BC ,D ở trên cạnh AB).Hãy tính diện tích hình tam giác BED.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Hai tam giác vuông HBE và ABC đồng dạng vì có góc nhọn B chung
=> HE/AC = BE/BC => BE = (HE.BC)/AC = (12.50)/30 = 20cm => E là trung điểm của AB (vì AB = 40cm)
=> F là trung điểm của AC (vì EFCB là hình thang nên EF//BC) => AF = 15cm
Diện tích hình tam giác AEF = 1/2.AE.AF = 1/2.20.15 = 150cm^2
b) Áp dụng định lý Pytago trong tam giác vuông AEF tính được EF = 25cm
Diện tích hình thang EFCB = [(EF + BC).EH] / 2 = [(25 + 50).12] / 2 = 450cm^2
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Tính số đo góc HAB
Trong tam giác HAB vuông tại H, ta có
- góc HAB = 180 độ - góc AHB - góc HBA = 180 độ - 90độ - 60độ = 30 độ (đpcm)
b. Trên cạnh AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI=tam giác ADI. Từ đó suy ra AI vuông góc với HD
Xét tam giác DIA và tam giác HIA, có
- DI = HI (I là trung điểm DH)
- cạnh IA chung
- AD = AH (giả thiết)
=> tam giác DIA = tam giác HIA (cạnh - cạnh - cạnh) (đpcm)
Ta có AD = AH => tam giác ADH cân tại A
mà I là trung điểm DH
=> AI là trung trực, trung tuyến, phân giác của tam giác cân ADH
=> AI vuông góc HD(đpcm)
c. Tia AI cat cạnh HC tại điểm K. Chứng minh AB // KD
Xét tam giác ADK và tam giác AHK, có
- AD = AH (giả thiết)
- góc DAK = góc HAK (do AI là phân giác của tam giác cân DAH; mà A,I,K thẳng hàng => AK là phân giác góc DAH)
- cạnh AK chung
=> tam giác ADK = tam giác AHK
=> góc ADK = góc AHK
mà AHK = 90 độ
=> góc ADK = 90 độ
Ta có góc ADK = 90 độ
=> KD vuông góc AC
mà AB cũng vuông góc AC (do tam giác vuông tại A)
=> AB // KD
\(toan\)\(phai\)\(co\)\(hinh\)
\(dungvaydo\)