cmr : với mọi số tự nhiên lẻ n thì n3-n luôn chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)
Nếu \(n=3k+1\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)
Nếu \(n=3k+2\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)
Vậy \(n^3-n⋮3\forall n\in Z\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Nếu n là số lẻ thì n^2 là số lẻ,n^2+n là số lẻ,n^2+n+1 là số chẵn
Nếu n là số chẵn thì n^2 là số chẵn,n^2+n là số chẵn,n^2+n+1 là số lẻ(đề ghi sai)
a, Nếu n là số lẻ thì \(n^2\) lẻ suy ra \(n^2+n\) chẵn (lẻ cộng lẻ ra chẵn nha bạn)
suy ra \(n^2+n+1\) lẻ
Nếu n là số chẵn thì \(n^2\) chẵn suy ra \(n^2+n\) chẵn (chẵn cộng chẵn vẫn ra chẵn nha bạn)
suy ra \(n^2+n+1\) lẻ
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Gợi ý: phân tích 50 n + 2 - 50 n + 1 = 245.10. 50 n .
b) Gợi ý: phân tích n 3 - n = n(n - 1)(n +1).
![](https://rs.olm.vn/images/avt/0.png?1311)
\(n^3-n\)= \(n\left(n^2-1\right)\)= \(\left(n-1\right)n\left(n+1\right)\)
Do (n-1)n(n+1) la h cua 3 so tự nhiên liên tiếp nên chia het cho 2 va 3
mà (2,3) =1 nen h chia het cho 6
Lại có n lẻ nên tích sẽ có 1 số chia hết cho 4
=> (n-1)n(n+1) chia hết cho 4*6 = 24
Hay \(n^3-1\)chia hết cho 24 với mọi số tự nhiên n lẻ
Đúng thì
Theo mình thì khi ta có a chia hết c, b chia hết cho c và (a,b)=1 thì ta mới có thể kết luận là ab chia hết cho c.
Ví dụ: 12 chia hết cho 4, 12 chia hết cho 6 nhưng 12 không chia hết cho 24.
Mình chỉ biết như thế còn không biết cách giải mong các bạn giúp đỡ.
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì n lẻ
=> n = 2k + 1 ( với k laf số tự nhiên )
\(\Rightarrow n^3-n=\left(2k+1\right)^3-\left(2k+1\right)\)
\(\Rightarrow n^3-n=\left(2k+1\right)\left[\left(2k+1\right)^2-1\right]\)
\(\Rightarrow n^3-n=\left(2k+1\right)\left(2k+2\right)2k\)
Vì 2k ; 2k + 1 ; 2k + 2 là 3 số tự nhiên liên tiếp .
\(\Rightarrow\left(2k+1\right)\left(2k+2\right)2k\) chia hết cho 3
\(\Rightarrow n^3-n⋮3\)
Mặt khác : \(n^3-n=\left(2k+1\right)\left(2k+2\right)2k\)
\(\Rightarrow n^3-n=\left(2k+1\right)2\left(k+1\right)2k\)
\(\Rightarrow n^3-n=\left(2k+1\right)4\left(k+1\right)k\)
Xét thấy k và k+1 là 2 số tự nhiên liên tiếp .
=> k(k+1) chia hết cho 2
\(\Rightarrow\left(2k+1\right)4\left(k+1\right)k⋮8\)
\(\Rightarrow n^3-n⋮8\)
Mà (3;8) = 1
=> n3 - n chia hết cho 24 ( đpcm )
n3-n=n(n-1)(n+1)
n(n-1) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2
n lẻ => n+1 chẵn n-1 chẵn mà tích 2 số chẵn chia hết cho 4 =>n(n-1)(n+1) chia hết cho 4
Ta thấy trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 =>n(n-1)(n+1) chia hết cho 3
=>n(n-1)(n+1) chia hết cho 2.3.4=24(ĐPCM)