Cho mình hỏi 1 có phải là số nguyên tố không, lời giải chi tiết.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bài 1) gọi tích 2 số nguyên liên tiếp là a(a+1)
Nếu a=3k => a(a+1)=3k(3k+1)=9k^2+3k chia hết cho 3
Nếu a=3k+1=> a(a+1)=3k+1(3k+1)=9k^2+3k+3k+1 chia 3 dư 1
Nếu a=3k+2 tương tự chia hết cho 3
Số 3^50+1 chia 3 dư 1(vô lý)
Vậy nó không phải là tích 2 số nguyên liên tiếp. CHÚC BẠN HỌC TỐT<3

Số nguyên tố không bao gời là số chẵn ( trừ số 2 ) và lúc nào cũng là số lẻ
Số lẻ + Số lẻ = Số chẵn
=> n + 2015 là hợp số

Vì n lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2:
Với n = 3k +1 thì:
n^2 + 2006 = (3k+1). (3k+1) +2006
= 9.k.k + 3k+3k+1 + 2006
= 3.(3.k.k +1+1)+1+2006
= 3.(3.k.k +1+1) + 2007 chia hết cho 3
=> Với n = 3k+1 thì n^2 + 2006 là hợp số
Với n= 3k+2 thì:
(3k+2).(3k+2)+2006 = 9.k.k+6k+6k+4+2006
=3(3.k.k + 2k +2k)+4+2006
=3(3.k.k +2k+2k)+2010 chia hết cho 3
=>Với n = 3k+2 thì n^2 +2006 là hợp số
Vậy với mọi số nguyên tố n lớn hơn 3 thì n^2 +2006 là hợp số
(Hãy làm theo cách của mình đi, đúng đó.Từ đóhãy tick cho mình nha)
=
TH1: n = 3k + 1 => (3k + 1)2 + 2006 <=> 9k2 + 6k + 1 + 2006 = 3k(3k + 2) + 2007
3k(3k + 2) chia hết cho 3 và 2007 chia hết cho 3 =>[3k(3k + 2) + 2007] chia hết cho 3 (1)
TH2: n = 3k + 2 => (3k + 2)2 + 2006 <=> 9k2 + 12k + 4 + 2006 = 3k(3k + 4) + 2010
3k(3k + 4) chia hết cho 3 và 2010 chia hết cho 3 => [3k(3k + 4) + 2010] chia hết cho 3 (2)
Từ (1) và (2) => n2 + 2006 là hợp số

96 = 25.3
=> 2x+1.3y = 25.3
=> x + 1 = 5 và y = 1
=> x = 4
Vậy x = 4; y = 1
96 =25.3
2x+1 . 3y =25 .3
=> x+1 = 5 => x =4
Và y =1
Vậy x =4 ; y =1

Ta có: \(BCNN\left(2;3;5\right)=30\)
\(\Rightarrow BC\left(2;3;5\right)=\left\{30;60;90;120;...\right\}\)
Mà theo đề các số này <1000
Nên \(BC\left(2;3;5\right)< 1000=\left\{30;60;90;....990\right\}\)(1)
Tập hợp (1) có tất cả: \(\frac{990-30}{30}+1=33\)(hạng tử)
Mặt khác, trong tập hợp (1) các số là\(B\left(8\right)=\left\{120;240;...;960\right\}\)(2)
Tập hợp (2) có tất cả: \(\frac{960-120}{120}+1=8\)(hạng tử)
Vậy từ 1 đến 1000 có tất cả \(33-8=25\)số vừa chia hết cho 2; 3 và 5 mà không chia hết cho 8
Giải thích thứ 1:1 không phải là số nguyen tố cũng không phải là hợp số vì khi 1 số nguyen tố nhan với 2 lên sẽ cho ta kết quả là 1 hợp số nhưng 1 x 2=2 ( không phải hợp số ) nên 1 ko phải là số nguyen tố.
Giải thích thứ 2: Số nguyen tố thường có 2 ước là 1 và chính nó những 1 chỉ có 1 ước là 1. Nén 1 không phải là số nguyen tố.
1 là số nguyên tố vì nó chia hết cho 1 và chính nó (là 1 luôn)