OLM Class: Học trực tiếp cùng giáo viên OLM (hoàn toàn mới)!
🔥OLM: CHUẨN BỊ NĂM HỌC MỚI KHÔNG LO CHẬM NHỊP!
Tham gia chuỗi tập huấn Miễn Phí cho Giáo viên và Nhà trường 2025 từ OLM!
🔥 Lớp học thử cùng giáo viên OLM Class, HOÀN TOÀN MIỄN PHÍ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(P=\frac{x+1}{x^2-4}\).
a, Tìm x để \(P>2\)
b, Tìm \(x\in Z\) để \(P\in Z\)
Cho biểu thức : A= \(\frac{x^{2^{ }}+x}{x^2-2x+1}\): \(\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
a) Rút gọn A
b) Tính giá trị của A khi |2x-5|=3
c) Tìm x để A=4
d)Tìm x để A<2
e) Tìm x\(\in\)Z để A\(\in\)Z
f) Tìm x\(\in\)Z để A\(\in\)N
g) Với x>1. Chứng minh rằng: A>1 \(\forall\)x
Cho C = \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}.\)
a) rút gọn C
b) tìm x\(\in\)Z để C \(\in\)Z
c) tìm x để C > \(\frac{1}{2}\)
KHÔNG BIẾT
\(Q=\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
a. Rút gọn Q.
b. Tìm x để Q >\(\frac{1}{2}\)
c. Tìm x \(\in\)Z để Q \(\in\)Z
a) Tìm x thuộc Z để :
\(x+5\) chia hết \(x^2-4\)
b) Tìm x thuộc Z để cho :
1)\(\frac{x^2-x}{x+1}\in Z\)
2)\(\frac{-x^2+2x-5}{x-2}\in Z\)
\(P=\left[\left(\frac{1}{X^2}+1\right)\cdot\frac{1}{x^2+2x+1}+\frac{2}{\left(x+1\right)^3}\cdot\left(\frac{1}{x}+1\right)\right]\cdot\frac{x-1}{x^3}\)
a. Rút gọn P
b, tìm x để P>0
c. tìm x để P=4
d. tim x\(\in\)z để P \(\in\)z
I don't now
...............
.................
cho bt p=\(1-\left(\frac{2}{\sqrt{x}+2}-\frac{5\sqrt{x}}{4x-1}-\frac{1}{1-2\sqrt{x}}\right):\frac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
a) rg p
b) tính gt của p nếu giá trị tuyệt đối của x=1
c) tính gt của x để p=\(\frac{1}{2}\)
d) tìm các gt \(x\in Z\) để \(p\in Z\)