Giúp em vơi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.





\(a=\lim\limits_{x\rightarrow-3}\dfrac{x+3}{\left(x+3\right)\left(x-3\right)}=\lim\limits_{x\rightarrow-3}\dfrac{1}{x-3}=-\dfrac{1}{6}\)
\(b=\lim\limits_{x\rightarrow2}\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\lim\limits_{x\rightarrow2}\dfrac{x+3}{x+2}=\dfrac{5}{4}\)
\(c=\lim\limits_{x\rightarrow4}\dfrac{\left(x-4\right)\left(x+4\right)}{\left(x+5\right)\left(x-4\right)}=\lim\limits_{x\rightarrow4}\dfrac{x+4}{x+5}=\dfrac{8}{9}\)
\(d=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2}\dfrac{x+2}{x-1}=4\)
\(e=\lim\limits_{x\rightarrow2}\dfrac{x+7-9}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=\lim\limits_{x\rightarrow2}\dfrac{1}{\sqrt{x+7}+3}=\dfrac{1}{6}\)
\(f=\lim\limits_{x\rightarrow1}\dfrac{x+3-4}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1}\dfrac{x-1}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1}\dfrac{1}{\sqrt{x+3}+2}=\dfrac{1}{4}\)
\(h=\lim\limits_{x\rightarrow-3}\dfrac{x+7-4}{\left(x+3\right)\left(\sqrt{x+7}+2\right)}=\lim\limits_{x\rightarrow-3}\dfrac{x+3}{\left(x+3\right)\left(\sqrt{x+7}+2\right)}=\lim\limits_{x\rightarrow-3}\dfrac{1}{\sqrt{x+7}+2}=\dfrac{1}{4}\)
Bài 1:
a,
= limx->-3 \(\dfrac{x+3}{\left(x+3\right)\left(x-3\right)}\)
= limx->3 x-3
= -3 -3
= -6
b,
= limx->2 \(\dfrac{\left(x-2\right)\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}\)
= limx->2 \(\dfrac{x+3}{x+2}\)
= \(\dfrac{5}{4}\)
c,
= limx->4 \(\dfrac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+5\right)}\)
= limx->4 \(\dfrac{\left(x+4\right)}{\left(x+5\right)}\)
= \(\dfrac{8}{9}\)
d,
= limx->2 \(\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)}\)
= limx->2 \(\dfrac{\left(x+2\right)}{\left(x-1\right)}\)
= 4

1 C
các cụm từ cố định: at the top of
2 D ở đây loại a/an vì là số nhiều, the không thể dùng vì được nói đến lần đầu tiên
3 C
cụm cố đinh: the only
4 the
the đứng trước những địa điểm công cộng: cinema, theater, post office,.....
5 B
Sự việc được nói đến lần đầu tiên, interesting kết thúc bằng nguyên âm => B
\(\overrightarrow{AB}=\left(1;1\right)\Rightarrow AB=\sqrt{2}\)
Từ C hạ CH vuông góc AB \(\Rightarrow S_{ABC}=\dfrac{1}{2}CH.AB\Rightarrow CH=\dfrac{2S_{ABC}}{AB}=\dfrac{3}{\sqrt{2}}\)
Từ G hạ GK vuông góc AB, gọi M là trung điểm AB
Theo định lý Talet: \(\dfrac{GK}{CH}=\dfrac{GM}{CM}=\dfrac{1}{3}\Rightarrow d\left(G;AB\right)=GK=\dfrac{CH}{3}=\dfrac{\sqrt{2}}{2}\)
Phương trình AB có dạng:
\(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)
G thuộc d nên tọa độ có dạng: \(G\left(a;3a-8\right)\)
\(d\left(G;AB\right)=\dfrac{\sqrt{2}}{2}=\dfrac{\left|a-\left(3a-8\right)-5\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left|-2a+3\right|=1\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}G\left(1;-5\right)\\G\left(2;-2\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_C=3x_G-\left(x_A+x_B\right)=...\\y_C=3y_G-\left(y_A+y_B\right)=...\end{matrix}\right.\)