K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

lên toán mẫu

21 giờ trước (16:28)

Bài 1 : Có số góc không kể góc bẹt là :
(3. 2). (3. 2- 1)/ 2= 15 (góc)
Bài 2 : Ta có số góc tạo thành là :
(n. 2). (n. 2- 1)/ 2
Bài 3 : Gọi số góc tăng thêm là a:
Theo đề bài ra ta có: [7. (7- 1)/ 2]- [5. (5- 1)/ 2]= a
=> 21- 10= a
=> a= 11
Vậy . .. .. ...

14 tháng 8 2021

giup minh bai 1 gap voi ah!!

Câu 3:

a: Độ dài cung nhỏ AB là:

\(\dfrac{2\cdot pi\cdot R\cdot120}{360}=\dfrac{pi\cdot R\cdot2}{3}\)

Độ dài cung nhỏ BC là;

\(\dfrac{2\cdot pi\cdot R\cdot120}{360}=pi\cdot R\cdot\dfrac{2}{3}\)

b: \(S=\dfrac{pi\cdot R^2\cdot120}{360}=pi\cdot R^2\cdot\dfrac{1}{3}\)

c: Diện tích hình quạt tròn OAC là:

\(S_q=\dfrac{pi\cdot R^2\cdot120}{360}=pi\cdot\dfrac{R^2}{3}\)

Diện tích tam giác OAC là:

\(S=\dfrac{1}{2}\cdot OA\cdot OC\cdot sin120=\dfrac{1}{4}\cdot R^2\)

Diện tích hình viên phân OAC là;

\(S_q-S=R^2\left(\dfrac{pi}{3}-\dfrac{1}{4}\right)\)

NV
27 tháng 7 2021

Kẻ đường cao AH ứng với BC

Trong tam giác vuông ACH:

\(sinC=\dfrac{AH}{AC}\Rightarrow AH=AC.sinC\)

\(cosC=\dfrac{CH}{AC}\Rightarrow CH=AC.cosC\)

Trong tam giác vuông ABH:

\(tanB=\dfrac{AH}{BH}\Rightarrow BH=\dfrac{AH}{tanB}=\dfrac{AC.sinC}{tanB}\)

Do đó:

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH\left(BH+CH\right)=\dfrac{1}{2}.4,5.sin55^0.\left(\dfrac{4,5.sin55^0}{tan60^0}+4,5.cos55^0\right)\approx8,68\left(cm^2\right)\)

NV
27 tháng 7 2021

undefined