K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

chịu luôn. Cái này chỉ cho mấy đứa học bồi giỏi Toán thôi!

11 tháng 2 2020

a) 12+(2x-11)=53

(2x-11) = 53-12

2x-11= 41

2x=41+11

2x=52

x= 52:2

x=26

Vậy...

11 tháng 2 2020

\(b,21-\left(-6+3x\right)=9\)

\(\Rightarrow21+6-3x=9\)

\(\Rightarrow27-3x=9\)

\(\Rightarrow3x=18\)

\(\Rightarrow x=6\)

c, -(2x+4)+11=-27

=>-2x-4+11=-27

=>-2x+7=-27

=>-2x = -34

=>x=17

d, 33-(33-x)=0

=>33-33+x=0

=>x=0

28 tháng 7 2017

\(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)

\(\Rightarrow\hept{\begin{cases}x=-3.15=-45\\y=-3.10=-30\\z=-3.6=-18\end{cases}}\)

Vậy \(x=-45\)\(y=-30\)\(z=-18\).

28 tháng 7 2017

Ta có:

2x=3y=5z=>\(\frac{2x}{30}=\frac{3y}{30}=\frac{5y}{30}\)=>\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{9}=\frac{-11}{3}\)

=>\(\frac{x}{15}=\frac{-11}{3}\)=>\(x=\frac{-11}{3}.15=-55\)

    \(\frac{y}{10}=\frac{-11}{3}\)=>\(y=\frac{-11}{3}.10=\frac{-110}{3}\)

     \(\frac{z}{6}=\frac{-11}{3}\)=>\(z=-\frac{11}{3}.6=-22\)

Vậy

2 tháng 9 2018

x,y nguyên không bạn

23 tháng 11 2019

Ta có: x y − 3 x − 2 y = 16 x 2 + y 2 − 2 x − 4 y = 33 1

 

Đặt u = x − 1 , v = y − 2 ta được h

Đặt S = u + v, P = uv ta được hệ P − S = 21 S 2 − 2 P = 38 ⇔ P = S + 21 S 2 − 2 S − 80 = 0

⇔ S = − 8 P = 13 hoặc S = 10 P = 31

+ Khi ⇔ S = − 8 P = 13 thì u, v là nghiệm của phương trình X 2 + 8 X + 13 = 0

+ Khi S = 10 P = 31 thì u, v là nghiệm của phương trình X 2 - 10 X + 31 = 0 (vô nghiệm)

Vậy hệ có nghiệm  x ; y = − 3 − 3 ; − 2 + 3    x ; y = − 3 + 3 ; − 2 − 3

Đáp án cần chọn là: A

27 tháng 7 2016

Đăng từng câu đio

27 tháng 7 2016

Hỏi đáp Toán

4 tháng 11 2019

6 tháng 10 2021

\(\Rightarrow\left(\dfrac{33}{11}\right)^{2x}=81\Rightarrow3^{2x}=3^4\Rightarrow x=2\)

16 tháng 1 2018

\(A=-x^2-y^2+xy+2x+2y\\ =-2x^2-2y^2+2xy+4x+4y\\ =\left(-x^2+2xy-y^2\right)+\left(-x^2+4x-4\right)+\left(-y^2+4y-4\right)+8\\ =-\left(x^2-2xy+y^2\right)-\left(x^2-4x+4\right)-\left(y^2-4y+4\right)+8\\ =-\left(x-y\right)^2-\left(x-2\right)^2-\left(y-2\right)^2+8\\ =-\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]+8\\ \left(x-y\right)^2\ge0\forall x,y;\left(x-2\right)^2\ge0\forall x;\left(y-2\right)^2\ge0\forall y\\ \Rightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\ge0\\ \Leftrightarrow-\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]\le0\\ \Leftrightarrow-\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]+8\le8\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-2\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-2=0\\y-2=0\end{matrix}\right.\\ \Leftrightarrow x=y=2\)

Vậy \(MAX_A=8\text{ khi }x=y=2\)

18 tháng 2 2019

do nghiệm của pt -2x2-2y2+2xy+4x+4y=0 không phải là nghiệm của

pt -x2-y2+xy+2x+2y= 0 nên MAX A KHÔNG THỂ BÀNG 8 KHI x=y=2

NV
23 tháng 7 2021

Đề là: \(P=x^3+y^3-\dfrac{x^2+y^2}{\left(x-1\right)\left(y-1\right)}\)

Hay \(P=\dfrac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\) 

Cái nào em nhỉ?

23 tháng 7 2021

cái ở dưới ạ