Cho đa thức M(x) = 3x^4 + x^2 + 4. Chứng tỏ rằng M(x) không có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Dễ mà bạn!
a)
M(x)= 5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3
M(x)= 2x^4-x^4+5x^3-4x^3-x^3-3x^2-x^2+1
M(x)= x^4+2x^2+1
b)
M(x)= x^4+2x^2+1
M(1)= 1^4+2.1^2+1
M(1)= 1+2+1
M(1)= 4
M(-1)= (-1)^4+2.(-1)^2+1
M(-1)= 1+2+1
M(-1)= 4
c) Vì x^4+2x^2+1 >= 1
Nên M(x)= x^4+2x^2+1 không có nghiệm
* M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3
= ( 2x4 - x4 ) + ( 5x3 - x3 - 4x3 ) + ( 3x2 - x2 ) + 1
= x4 + 2x2 + 1
* M(1) = 14 + 2 .12 + 1 = 1 + 2 . 1 + 1 = 4
M(-1) = (-1)4 + 2. (-1)2 + 1 = 1 + 2.1 + 1 = 4
* Ta có \(x^4\ge0\forall x,x^2\ge0\forall x\Rightarrow x^4+x^2+1\ge1>0\)
=> M(x) vô nghiệm

a, N(x)=3x+4
Ta có:
\(N\left(x\right)=0\Leftrightarrow3x+4=0\Leftrightarrow3x=-4\Leftrightarrow x=-\frac{4}{3}\)
Vậy \(x=-\frac{4}{3}\) là nghiệm của đa thức N(x) = 3x + 4

bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha


M(x) = 0 => 3x4 + x2 + 4 = 0
=> 3x4 + x2 = 0 - 4 = -4
mà 3x4 \(\ge\) 0
x2 \(\ge\)0
vậy đa thức M không có nghiệm (vô nghiệm) (đpcm)

a,\(M(x)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)
\(=(2x^4-x^4)+(6x^3-2x^3-4x^3)+(-x^2+3x^2)+1\)
\(=x^4+2x^2+1\)
b.\(M(x)+N(x)=(x^4+2x^2+1)+(-5x^4+x^3+3x^2-3)\)
\(=(x^4-5x^4)+x^3+(2x^2+3x^2)+(1-3)\)
\(=-4x^4+x^3+5x^2-2\)
\(M(x)-N(x)=(x^4+2x^2+1)-(-5x^4+x^3+3x^2-3)\)
\(=(x^4+5x^4)-x^3+(2x^2-3x^2)+(1+3)\)
\(=6x^4-x^3-x^2+4\)
c.Ta có
\(M(x)=x^4+2x^2+1=0\)
\(\Rightarrow x^4+2x^2=-1\)
mà \(x^4\ge0;2x^2\ge0\)
Vậy đa thức \(M(x)\)ko có nghiệm
Chúc bạn học tốt

ta có 2x ^ 4 >= 0 với mọi x
3x ^ 2 >= 0 với mọi x
suy ra: 2x^4 + 3x ^2 >= 0
2x^4 + 3x ^2 +6 >= 6 > 0
hay M(x) > 0
vậy đa thức M(x) vô nghiệm

x4 ≥0 với mọi x
x2 ≥0 với mọi x
⇒ x4+ x2 ≥ 0
⇒ x4 +x2 +1>1
⇒Đa thức trên vô nghiệm
.
M(x) = 0 => 3x4 + x2 + 4 = 0 (thay đa thức bằng 0)
=> 3x4 + x2 = -4
mà 3x4 \(\ge\)0
x2 \(\ge\) 0
nên suy ra: 3x4 + x2 \(\ge\) 0
=> x không tồn tại hay đa thức M ko có nghiệm (vô nghiệm)