Bài 1 Tìm x;
a x+1+x+2+x+3+....+x+16=5750
b x+2x+3x+4x=5x+6x-2
Bài 2 Cho một số tự nhiên . nếu đem nhân số đó với 2 cộng thêm 500vao tích nhân tông với 5 trụ tích 200 rồi chia cho 10 thì được 30 .Tìm số đó
giúp tớ với nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình như bài này gần gióng vs bài lớp 6 (ý kiến riêng ) đừng ném dá
Ta có: \(\left(x-1\right)^{40}=\left(x-1\right)^{42}\)
\(\Leftrightarrow\left(x-1\right)^{42}-\left(x-1\right)^{40}=0\)
\(\Leftrightarrow\left(x-1\right)^{40}\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^{40}=0\\\left(x-1\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2;x=0\end{cases}}\)
Vậy \(x\in\left\{0;1;2\right\}\)
a,x(x-2)+x-2=0
⇔ (x-2)(x+1)=0
⇔ x=2;x=-1
b,x3+x2+x+1=0
⇔ x2(x+1)+x+1=0
⇔ (x+1)(x2+1)=0
⇔ x=-1
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|y-4\right|=2\)
\(\Leftrightarrow\left|x-1\right|+\left|x-3\right|+\left|x-2\right|+\left|y-4\right|=2\)
Đặt \(A=\left|x-1\right|+\left|x-3\right|\)
\(\Rightarrow A=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=\left|2\right|=2\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)
TH1: \(\hept{\begin{cases}x-1< 0\\3-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\3< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x>3\end{cases}}\)( vô lý )
TH2: \(\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\3\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\Leftrightarrow1\le x\le3\)
\(\Rightarrow minA=2\)\(\Leftrightarrow1\le x\le3\)
mà \(\left|x-2\right|\ge0\); \(\left|y-4\right|\ge0\forall x,y\)
\(\Rightarrow\left|x-1\right|+\left|x-3\right|+\left|x-2\right|+\left|y-4\right|\ge2\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y-4=0\\1\le x\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\1\le x\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy \(x=2\)và \(y=4\)
a, \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left(3x+3\right)^2=0\Leftrightarrow\left(4x-3x-3\right)\left(4x+2x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(6x+3\right)=0\Leftrightarrow x=-\frac{1}{2};x=3\)
b, \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow x=-2;x=\frac{1}{3}\)
c, \(5x^3-20x=0\Leftrightarrow5x\left(x^2-4\right)=0\)
\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow x=0;x=\pm2\)