K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

Cô-Si 2 số dương:

\(\hept{\begin{cases}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{cases}}\)

\(=>\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=\left(2.2.2\right)\left(\sqrt{ab}.\sqrt{bc}.\sqrt{ca}\right)=8abc\)

11 tháng 10 2016

Áp dụng Bdt cosi 3 số dương ta có"

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu = khi a=b=c

Đpcm

15 tháng 7 2018

Xét hiệu:

\(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left(b+c\right)-b\left(a+c\right)}{b.\left(b+c\right)}=\frac{ab+ac-ab-bc}{b.\left(b+c\right)}=\frac{c\left(a-b\right)}{b.\left(b+c\right)}\)

Ta có: \(b.\left(b+c\right)>0\)

Với \(a=b\Rightarrow a-b=0\Rightarrow\frac{c.\left(a-b\right)}{b.\left(b+c\right)}=\frac{c.0}{b+\left(b+c\right)}=0\Rightarrow\frac{a}{b}=\frac{a+c}{b+c}\)

Với \(a>b\Rightarrow a-b>0\Rightarrow\frac{c.\left(a-b\right)}{b.\left(b+c\right)}>0\Rightarrow\frac{a}{b}>\frac{a+c}{b+c}\)

Với \(a< b\Rightarrow a-b< 0\Rightarrow\frac{c.\left(a-b\right)}{b.\left(b+c\right)}< 0\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)

Vậy với \(a=b th\text{ì} \frac{a}{b}=\frac{a+c}{b+c}\)

           \(a>bth\text{ì}\frac{a}{b}>\frac{a+c}{b+c}\)

          \(a< th\text{ì}\frac{a}{b}< \frac{a+c}{b+c}\) 

Tham khảo nhé~