Cho tam giác ABC Có phân giác BD = phân giác CE. CM tam giác ABC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cho tam giác abc góc a = 60 . phân giác bd và ce cắt nhau tại o . cm tam giác ode cân , BE + CD = BC


-Xét △ABC có: BD, CE lần lượt là các đường phân giác (gt)
\(\Rightarrow\dfrac{BE}{AE}=\dfrac{BC}{AC};\dfrac{DC}{AD}=\dfrac{BC}{AB}\) (định lí đường phân giác trong tam giác)
Mà \(AB=AC\) (△ABC cân tại A)
\(\Rightarrow\dfrac{BE}{AE}=\dfrac{DC}{AD}\) nên DE//BC (định lí Ta-let đảo)
\(\Rightarrow\dfrac{AB}{AE}=\dfrac{BC}{DE}=\dfrac{8}{5}\) (định lí Ta-let)
\(\Rightarrow\dfrac{AB}{AE}-1=\dfrac{8}{5}-1\)
\(\Rightarrow\dfrac{BE}{AE}=\dfrac{3}{5}\) mà \(\dfrac{BE}{AE}=\dfrac{BC}{AC}\left(cmt\right)\)
\(\Rightarrow\dfrac{BC}{AC}=\dfrac{3}{5}\)
\(\Rightarrow AC=AB=\dfrac{5.BC}{3}=\dfrac{5.8}{3}=\dfrac{40}{3}\left(cm\right)\)


Có `Delta ABC` cân tại `A=>AB=AC;hat(ABC)=hat(ACB)`
Có `hat(ABC)=hat(ACB)(cmt)`
mà `BD` là p/g `hat(ABC)`
`CE` là p/g `hat(ACB)`
nên `hat(B_1)=hat(C_1)`
Xét `Delta ABD` và `Delta ACE` có :
`{:(hat(B_1)=hat(C_1)(cmt)),(AB=AC(cmt)),(hat(A)-chung):}}`
`=>Delta ABD=Delta ACE(g.c.g)`
`=>BD=CE` ( 2 cạnh t/ứng )(đpcm)

A B C D E
BD là đường phân giác của góc B nên ta có :
\(\widehat{ABD}=\widehat{CBD}=\dfrac{1}{2}\widehat{B}\) ( 1 )
CE là đường phân giác của góc C nên ta có :
\(\widehat{ACE}=\widehat{BCE}=\dfrac{1}{2}\widehat{C}\) ( 2 )
Từ ( 1 ) , ( 2 ) = > \(\widehat{ABD}=\widehat{ACE}\)
Xét tam giác ADB và tam giác AEC ta có :
Góc A chung
AB = AC ( gt )
\(\widehat{ABD}=\widehat{ACE}\) ( cmt )
= > \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)
= > BD = CE ( 2 cạnh tương ứng )