Cho bao số tự nhiên x,y,z, biết x+y=5 và 2x . 2y . 2z =64
Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(2x+y\right)=1;2y+z=2;2z+x=3\)
\(\Rightarrow2x+y+2y+z+2z+x=1+2+3\)
\(\Rightarrow3x+3y+3z=6\)
\(\Rightarrow x+y+z=2\)
đặt \(\dfrac{x+2y}{3}=\dfrac{y+2z}{4}=\dfrac{z+2x}{5}=t\)
vậy ta đc \(\left\{{}\begin{matrix}x+2y=3t\left(1\right)\\y+2z=4t\left(2\right)\\z+2x=5t\left(3\right)\end{matrix}\right.\)
từ (1) ta có: x = 3t - 2y
thay vào (3) ta được: z + 2 × (3t - 2y) = 5t
=> z + 6t - 4y = 5t => z = -t + 4y (3')
từ (2) ta có: \(z=\dfrac{4t-y}{2}\left(2'\right)\)
từ (2') và (3') ta có:
\(-t+4y=\dfrac{4t-y}{2}\\ -2t+8y=4t-y\\ 9y=6t=>y=\dfrac{2}{3}t\)
thay vào (1): \(x=3t-2\cdot\dfrac{2}{3}t=3t-\dfrac{4}{3}t=\dfrac{5}{3}t\)
thay vào (2'): \(z=\dfrac{4t-\dfrac{2}{3}t}{2}=\dfrac{\dfrac{10}{3}t}{2}=\dfrac{5}{3}t\)
vậy: \(x=\dfrac{5}{3}t;y=\dfrac{2}{3}t;z=\dfrac{5}{3}t\)
thay các giá trị này vào biểu thức trên ta được:
\(xy+yz+2zx=\dfrac{5}{3}t\cdot\dfrac{2}{3}t+\dfrac{2}{3}t\cdot\dfrac{5}{3}t+\dfrac{5}{3}t\cdot\dfrac{5}{3}t\\ xy+yz+2zx=\dfrac{10}{9}t^2+\dfrac{10}{9}t^2+\dfrac{50}{9}t^2\\ =>\dfrac{70}{9}t^2=280=>t=6\\ \left\{{}\begin{matrix}x=\dfrac{5}{3}t=\dfrac{5}{3}\cdot6=10\\y=\dfrac{2}{3}t=\dfrac{2}{3}\cdot6=4\\y=\dfrac{5}{3}t=\dfrac{5}{3}\cdot6=10\end{matrix}\right.\)
vậy các số x; y; z cần tìm lần lượt là 10; 4; 10
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{2x+y+2z}{x+y+3z}=\frac{2x+2y+z}{3x+y+z}=\frac{x+2y+2z}{x+3y+z}=\frac{2x+y+2z+2x+2y+z+x+2y+2z}{x+y+3z+3x+y+z+x+3y+z}=\frac{5x+5y+5z}{5x+5y+5z}=1\)
Vậy x=y=z
Cho ba số tự nhiên x,y,z, biết x+y=5 và 2x . 2y . 2z =64
Tìm x