Tìm m để \(x^3+mx-6\) chia hết cho \(x^2-2x-3\)
(bằng cách dùng sơ đồ Hoocne nhé)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm m để
a, (x^4+5x^3-x^2-17x+m+4)chia hết cho (x^2+2x-3)
b, (2x^4+mx^3-mx-2) chia hết cho (x^2-1)
x^2-2x+3 2x^3-9x^2+mx-15 2x-5 2x^3-4x^2+6x -5x^2+(m-6)x-15 -5x^2+10x-15 (m-16)x
Để đa thức 2x3-9x2+mx-15 chia hết cho đa thức x2-2x+3 thì \(\left(m-16\right)x=0\Rightarrow m-16=0\Rightarrow m=16\)
Vậy m = 16 thì đa thức 2x3-9x2+mx-15 chia hết cho đa thức x2-2x+3
2x^3-9x^2+mx-15 x^2-2x+3 2x+13 2x^3-4x^2+6x 13x^2+x(m-6)-15 13x^2-26x +39 x(m+20)-54
Đến đây làm sao nữa ta ?
a:
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}m+1=2\\6< >-2\left(đúng\right)\end{matrix}\right.\)
=>m+1=2
=>m=1
c:
(d'): y=(m+1)x+6
=>(m+1)x-y+6=0
Khoảng cách từ O đến (d') là:
\(d\left(O;\left(d'\right)\right)=\dfrac{\left|0\cdot\left(m+1\right)+0\cdot\left(-1\right)+6\right|}{\sqrt{\left(m+1\right)^2+\left(-1\right)^2}}\)
\(=\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}\)
Để \(d\left(O;\left(d'\right)\right)=3\sqrt{2}\) thì \(\dfrac{6}{\sqrt{\left(m+1\right)^2+1}}=3\sqrt{2}\)
=>\(\sqrt{\left(m+1\right)^2+1}=\sqrt{2}\)
=>\(\left(m+1\right)^2+1=2\)
=>\(\left(m+1\right)^2=1\)
=>\(\left[{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
Với tất cả các câu, mk chỉ làm ngắn gọn. Nếu bn muốn đầy đủ, thì bn tự lập bảng rồi xét.
1. \(13⋮\left(x-3\right)\)
\(\Leftrightarrow\left(x-3\right)\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{2;4;-10;16\right\}\)
Vậy x = ......................
2. \(\left(x+13\right)⋮\left(x-4\right)\)
\(\Leftrightarrow\left(x-4\right)+17⋮\left(x-4\right)\)
\(\Leftrightarrow17⋮x-4\)
\(\Leftrightarrow\left(x-4\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
\(\Rightarrow x\in\left\{3;5;-13;21\right\}\)
Vậy x = ...................
3. \(\left(2x+108\right)⋮\left(2x+3\right)\)
\(\Leftrightarrow\left(2x+3\right)+105⋮\left(2x+3\right)\)
\(\Leftrightarrow105⋮\left(2x+3\right)\)
\(\Leftrightarrow\left(2x+3\right)\inƯ\left(105\right)\)\(=\left\{\pm1;\pm3;\pm5;\pm7;\pm15;\pm21;\pm35;\pm105\right\}\)
\(\Rightarrow x=-2;-1;-3;0;-4;1;-5;2;...............\)
4. \(17x⋮15\)
\(\Leftrightarrow x⋮15\) ( vì \(\left(15,17\right)=1\) )
Do đó : Với mọi x thuộc Z thì \(17x⋮15\)
6. \(\left(x+16\right)⋮\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)+15⋮\left(x+1\right)\)
\(\Leftrightarrow15⋮\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
\(\Rightarrow x\in\left\{-2;0;-4;2;-6;4;-16;14\right\}\)
Vậy x = .....................
7. \(x⋮\left(2x-1\right)\)
Mà \(\left(2x-1\right)\) lẻ
Nên : Với mọi x thuộc Z là số lẻ thì \(x⋮\left(2x-1\right)\)
8. \(\left(2x+3\right)⋮\left(x+5\right)\)
\(\Leftrightarrow\left(2x+10\right)-7⋮\left(x+5\right)\)
\(\Leftrightarrow2.\left(x+5\right)-7⋮\left(x+5\right)\)
\(\Leftrightarrow7⋮\left(x+5\right)\)
\(\Leftrightarrow\left(x+5\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{-6;-4;-12;2\right\}\)
Vậy x = .........................