Xin giúp mình đi ạ mình cảm ơn rất nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài III.2b.
Phương trình hoành độ giao điểm của \(\left(P\right)\) và \(\left(d\right)\) : \(x^2=\left(m+1\right)x-m-4\)
hay : \(x^2-\left(m+1\right)x+m+4=0\left(I\right)\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm nên phương trình \(\left(I\right)\) sẽ có hai nghiệm phân biệt. Do đó, phương trình \(\left(I\right)\) phải có :
\(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(m+4\right)\)
\(=m^2+2m+1-4m-16\)
\(=m^2-2m-15>0\).
\(\Rightarrow m< -3\) hoặc \(m>5\).
Theo đề bài : \(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)
\(\Rightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\left(2\sqrt{3}\right)^2=12\)
\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=12\left(II\right)\)
Do phương trình \(\left(I\right)\) có hai nghiệm khi \(m< -3\) hoặc \(m>5\) nên theo định lí Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m+1\right)}{1}=m+1\\x_1x_2=\dfrac{c}{a}=\dfrac{m+4}{1}=m+4\end{matrix}\right.\).
Thay vào \(\left(II\right)\) ta được : \(m+1+2\sqrt{m+4}=12\)
Đặt \(t=\sqrt{m+4}\left(t\ge0\right)\), viết lại phương trình trên thành : \(t^2-3+2t=12\)
\(\Leftrightarrow t^2+2t-15=0\left(III\right)\).
Phương trình \(\left(III\right)\) có : \(\Delta'=b'^2-ac=1^2-1.\left(-15\right)=16>0\).
Suy ra, \(\left(III\right)\) có hai nghiệm phân biệt :
\(\left\{{}\begin{matrix}t_1=\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{-1+\sqrt{16}}{1}=3\left(t/m\right)\\t_2=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{-1-\sqrt{16}}{1}=-5\left(ktm\right)\end{matrix}\right.\)
Suy ra được : \(\sqrt{m+4}=3\Rightarrow m=5\left(ktm\right)\).
Vậy : Không có giá trị m thỏa mãn đề bài.
Bài IV.b.
Chứng minh : Ta có : \(OB=OC=R\) nên \(O\) nằm trên đường trung trực \(d\) của \(BC\).
Theo tính chất hai tiếp tuyến cắt nhau thì \(IB=IC\), suy ra \(I\in d\).
Suy ra được \(OI\) là một phần của đường trung trực \(d\) của \(BC\) \(\Rightarrow OI\perp BC\) tại \(M\) và \(MB=MC\).
Xét \(\Delta OBI\) vuông tại \(B\) có : \(MB^2=OM.OI\).
Lại có : \(BC=MB+MC=2MB\)
\(\Rightarrow BC^2=4MB^2=4OM.OI\left(đpcm\right).\)
Tính diện tích hình quạt tròn
Ta có : \(\hat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\Rightarrow sđ\stackrel\frown{BC}=2.\hat{BAC}=2.70^o=140^o\) (góc nội tiếp).
\(\Rightarrow S=\dfrac{\pi R^2n}{360}=\dfrac{\pi R^2.140^o}{360}=\dfrac{7}{18}\pi R^2\left(đvdt\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
uses crt;
var a:array[1..1000]of integer;
n,i,k,min,vt:integer;
begin
clrscr;
write('Nhap n='); readln(n);
if n=0 then writeln('Moi ban nhap lai')
else begin
for i:=1 to n do
begin
write('A[',i,']='); readln(a[i]);
end;
for i:=1 to n do
write(a[i]:4);
writeln;
min:=a[1];
vt:=1;
for i:=1 to n do
if min>a[i] then
begin
min:=a[i];
vt:=i;
end;
writeln('So nho nhat la: ',min,' tai vi tri: ',vt);
write('Nhap k='); readln(k);
for i:=1 to n do
if i<>k then write(a[i]:4);
end;
readln;
end.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tổng thòi gian Nam đi bộ :
25 + 25 = 50 ( phút )
Trung bình mỗi phút Nam đi được :
( 2250 + 1750 ) : 50 = 80 ( m )
đ/s : 80 m
Trung bình mỗi phút Nam đi được số mét là:
(2250 + 1750) : (25 + 25) = 80 (m)
ĐS: 80m
tk mình nha, chúc bạn học tốt
THANK YOU SO MUCH!!
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) \(A\left(x\right)+B\left(x\right)=\left(-x^3+x^2-5x+1\right)+\left(x^3+4x-5\right)\)
\(=-x^3+x^2-5x+1+x^3+4x-5\)
\(=\left(-x^3+x^3\right)+x^2+\left(-5x+4x\right)+\left(1-5\right)\)
\(=x^2-x-4\)
b) \(A\left(x\right)-B\left(x\right)=\left(-x^3+x^2-5x+1\right)-\left(x^3+4x-5\right)\)
\(=-x^3+x^2-5x+1-x^3-4x+5\)
\(=\left(-x^3-x^3\right)+x^2+\left(-5x-4x\right)+\left(1+5\right)\)
\(=-2x^3+x^2-9x+6\)
Bài 2
* \(P+Q=\left(x^5+7x^3+1\right)+\left(x^3-4x^5+2\right)\)
\(=x^5+7x^3+1+x^3-4x^5+2\)
\(=\left(x^5-4x^5\right)+\left(7x^3+x^3\right)+\left(1+2\right)\)
\(=-3x^5+8x^3+3\)
* \(P-Q=\left(x^5+7x^3+1\right)-\left(x^3-4x^5+2\right)\)
\(=x^5+7x^3+1-x^3+4x^5-2\)
\(=\left(x^5+4x^5\right)+\left(7x^3-x^3\right)+\left(1-2\right)\)
\(=5x^5+6x^3-1\)