Chứng tỏ rằng số tự nhiên có dạng HỌCHỌC chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: HOCHOC = HOC x 1000 + HOC
= HOC x 1001
= HOC x 7 x 11 x 13 chia hết cho 13
Chứng tỏ ...
![](https://rs.olm.vn/images/avt/0.png?1311)
TH1: n chia hết cho 5
=> n2 chia hết cho 5
=> n2 + n chia hết cho 5
Mà 1 chia 5 dư 1
=> n2 + n + 1 chia 5 dư 1
TH2: n chia 5 dư 1
=> n2 chia 5 dư 1
=> n2 + n chia 5 dư 2
Mà 1 chia 5 dư 1
=> n2 +n + 1 chia 5 dư 3
TH3: n chia 5 dư 2
=> n2 chia 5 dư 4
=> n2 + n chia 5 dư 1
Mà 1 chia 5 dư 1
=> n2 + n + 1 chia 5 dư 2
TH4: n chia 5 dư 3
=> n2 chia 5 dư 4
=> n2 + n chia 5 dư 2
Mà 1 chia 5 dư 1
=> n2 + n + 1 chia 5 dư 3
TH5: n chia 5 dư 4
=> n2 chia 5 dư 1
=> n2 + n chia 5 dư 2
Mà 1 chia 5 dư 1
=> n2 + n + 1 chia 5 dư 3
Vậy với mọi số tự nhiên n thì n2 + n + 1 không chia hết cho 5
![](https://rs.olm.vn/images/avt/0.png?1311)
ta phân tích như sau :
abcabc=abcx1001 vì 1001 chia hết cho 3 số nguyên 7 ;11;13 nên abcx1001cũng chia hết cho 7;11;13 mà abcabc=abcx1001 từ đó suy ra abcabc chia hết ít nhất 3 số nguyên tố
ta có:abcabc=abc.1001
mà 1001 chia hết cho 7;11;13(là số nguyên tố)
nên abc.1001 chia hết cho 7;11;13(là số nguyên tố)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
![](https://rs.olm.vn/images/avt/0.png?1311)
Phân tích cấu tạo số ta có : aaa=a x 111 = a x 3 x 37
=> aaa luôn chia hết cho 37 (đpcm)
Ta có dạng HỌCHỌC = HỌC X 1000 + HỌC
= HỌC X 1001
HỌC X 7 X 11 X 13 chia hết cho 13
Chững tỏ ...............
k mik nha
THANKS YOU !