Tìm a và b để đa thức P(x) = x5 + 4x4 - 7x2 + ax + b chia hết cho Q(x) = x2 + 5x +6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A(x)=(a-2b)x^2-3bx+a-1
Theo đề, ta có: A(x) chia hết cho x-4 và A(1)=0
=>a-2b-3b+a-1=0
=>2a-5b-1=0
=>5b=2a-1
=>b=0,4a-0,2
A(x)=(a-2b)x^2-3bx+a-1
=(a-0,8a+0,4)x^2-3x(0,4a-0,2)+a-1
=(0,2a+0,4)x^2-(1,2a-0,6)x+a-1
A(x) chia hết cho x-4
=>(0,2a+0,4)x^2-x(0,8a+1,6)+x(0,8a+1,6-1,2a+0,6)+a-1 chia hết cho x-4
=>x(-0,4a+2,2)+a-1 chia hết cho x-4
=>x(-0,4a+2,2)-4(-0,4a+2,2)+4(-0,4a+2,2)+a-1 chia hết cho x-4
=>-1,6a+8,8+a-1=0
=>-0,6a+7,8=0
=>a=13
=>b=0,4*13-0,2=5,2-0,2=5
![](https://rs.olm.vn/images/avt/0.png?1311)
bằng 15 bạn ơi. chắc chắn 100% đúng tick cho mình nha. thanks
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{P\left(x\right)}{Q\left(x\right)}=\frac{x^4+x^3-2x^2+ax+b+x^2}{x^2+x-2}=x^2+\frac{x^2+ax+b}{x^2+x-2}\)
Để P(x)\(⋮\) Q(x)
\(\Rightarrow x^2+ax+b⋮x^2+x-2\)
\(\Rightarrow a=1;b=-2\)
Vậy.......
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng định lý Bezout ta có:
f(x) chia hết cho x-3 \(\Rightarrow f\left(3\right)=0\)
\(\Leftrightarrow2a+3b=-87\left(1\right)\)
g(x) chia hết cho x-3 \(\Rightarrow g\left(3\right)=0\)
\(\Leftrightarrow-3a+2b=-318\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}2a+3b=-87\\-3a+2b=-318\end{cases}\Leftrightarrow}\hept{\begin{cases}a=60\\b=-69\end{cases}}\)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
bớt xàm đi Đỗ Mai Linh ơi.ng ta chat hay ko vc ng ta.đây là nơi để học chứ éo pk nơi để ns linh tinh trên này đâu